ISSN 2664-262X Central Ukrainian Scientific Bulletin. Technical Sciences. 2025. Issue 11(42), Part 11

UDC 004.94:004.052:004.415 https://doi.org/10.32515/2664-262X.2025.11(42).2.38-44

Olena Shyshatska', PhD phys. and math. sci., Liubomyr Matiichuk”, DSc., Andrii Shyshatskyy'
"Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

*Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine

e-mail: shyshatska@knu.ua, mlpstat@gmail.com, ashyshatskyy@knu.ua

Specification and Verification of a Formal Model
for a Real-Time System Using TLA+

The paper describes theoretical and applied aspects of modeling real-time information systems using the
example of a continuous glucose monitoring (CGM) system. The primary focus is on the application of formal
methods, in particular the TLA+ specification language and modal logics, which ensure mathematical precision
in describing system behavior. A formal model of the CGM system is constructed, safety invariants are defined,
and automated model verification is performed using the TLC mechanism. The obtained results can be used to
improve the reliability and justify the correctness of software-hardware solutions in the field of medical IT
systems, particularly Closed-Loop Systems (CLS), which currently lack appropriate regulatory certification. The
proposed approach contributes to the formalization of the validation process for such systems in accordance with
standards for safety-critical software.
real-time systems, CGM, model, formal design methods, specification, verification, TLA+

Problem Statement. Continuous glucose monitoring (CGM) systems belong to the
class of real-time software-hardware systems operating in sensitive medical environments.
Such systems are characterized by stringent requirements for accuracy, performance, safety,
and the handling of large volumes of data, which aligns fully with the typical characteristics
of critical IT systems [1]. Ensuring the reliable operation of such systems is a key prerequisite
for their use in the medical domain.

Despite the widespread adoption of CGM devices in clinical practice, a number of
unresolved technical challenges remain. These include ensuring measurement accuracy,
proper real-time event handling, adaptation to individual usage scenarios, and the lack of
formal certification for certain components within Closed-Loop Systems (CLS). Many CLS
implementations lack official certification, which increases the risks for end users.

Formal methods, particularly the use of specification languages such as TLA+
(Temporal Logic of Actions) [2, 3], make it possible to describe the behavior of IT systems,
define invariants, formally verify safety and performance properties, and detect design errors
at early development stages, thereby reducing the cost of their correction. However, despite
the existence of general theoretical frameworks, there remains a need for applied research that demonstrates
the practical application of formal methods across the full development cycle of medical
software-hardware IT systems. This necessity determines the relevance of the present study.

The aim of the study is to develop a formal model of a CGM system using the TLA+
specification language and to verify its properties in terms of invariance, safety, and
correctness of state transitions.

To achieve this goal, the following tasks must be completed:

1. Analyze the technical requirements for CGM as a real-time system,;

2. Justify the choice of TLA+ as a formal means of describing system behavior;

3. Develop a formal specification of the monitoring model, including key invariants;

4. Perform automated verification using the TLC mechanism;

5. Assess the practical effectiveness of the approach based on experimental scenarios.

Review of Recent Research and Publications. Continuous glucose monitoring
(CGM) systems belong to the class of safety-critical software-hardware complexes operating

© O. B. llumaneka, JI. I1. Matiituyk, A. B. [umanskuii, 2025

38

ISSN 2664-262X I{enTpanbHOyKpaiHChKUH HayKOBHiA BicHUK. TexHiuni Hayku. 2025. Bum. 11(42), u. 11

in real-time environments. They are used in medical settings and are characterized by
stringent requirements for accuracy, performance, and safety. The design of such systems
becomes particularly complex in the context of Closed-Loop Systems (CLS), which automate
insulin delivery. While commercial solutions are steadily improving, a significant portion of
the market is occupied by DIY systems, which are not subject to certification and therefore
pose additional risks.

Despite advances in the hardware components of CGM systems, the issues of formal
modeling and verification of their software behavior remain underexplored. In [1], the authors
highlight the limitations of traditional testing in the context of safety-critical IT systems, as
not all errors can be detected empirically. They propose a multi-level verification strategy
based on constructing specifications using formal languages, notably Z.

An early example of applying formal methods to glucose monitoring systems is
presented in [2], which proposes a top-down approach to the design of insulin systems using
atomic coordinated actions. The development was carried out within the CAA-DRIP
(Computer Aided Architecture — Distributed Real-time Implementation Platform)
environment, which supports formal system modeling.

In this context, interest in formal development languages is growing, particularly the
TLA+ (Temporal Logic of Actions) language developed by L. Lamport [3]. TLA+ allows for
the description of parallel, sequential, and reactive behaviors of IT systems, as well as
verification of their properties using the TLC Model Checker. Practical aspects of planning
and verifying invariants in TLA+ are detailed in [4]. The theoretical foundation of TLA+ lies
in temporal and modal logics [5], which enable the formal specification of temporal properties
such as obligation, possibility, and event succession. The foundational aspects of these logics
are elaborated in [5—6], and their application to the control of dynamic systems is illustrated in
[4]. All these approaches contribute to the development of verifiable behavioral models for
complex real-time IT systems.

Examples of the effective use of TLA+ are presented in [9], where the language is
employed at AWS to verify the consistency and correctness of distributed storage systems,
and in [10], which demonstrates the application of formal methods in the design of embedded
systems with guaranteed safety properties. A comprehensive overview of the implementation
of formal methods in critical IT domains is provided in [11], which examines experiences in
the transportation, aviation, and financial sectors.

However, the application of TLA+ to the design of medical IT systems, particularly
CGM/CLS, remains limited. This creates an open niche for further research.

Thus, the current literature confirms the existence of powerful formal method toolkits
in computer science, including TLA+, yet their application to glucose monitoring systems has
not become widespread. This underlines the need for applied developments focused on the
formal specification and verification of CGM system behavior in real-time operation.

Problem Definition. This study sets out the task of developing an adaptive formal
model of a glucose monitoring system that can be adjusted to meet the specifications of specific
CGM solutions. The developed second-generation CGM model is implemented in the TLA+
language and is designed to be scalable for integration into Closed-Loop Systems (CLS).

The proposed approach enables: formal verification of algorithms in DIY-type CLS
systems, thereby increasing their reliability; the development of unified criteria for certifying
such medical IT solutions; and the optimization of component integration between CGM and
CLS, ensuring more effective insulin therapy management for users.

Main Content. Modeling a CGM system requires tools for the formal description of
its behavior across different temporal frames, as well as for the specification of functional
requirements. Temporal modal logic is an optimal choice for modeling system behavior, as it
specializes in working with time-based models [7-10]. Alethic logic is used for the
formalization of system requirements, as it provides sufficient expressive power for system

39

ISSN 2664-262X Central Ukrainian Scientific Bulletin. Technical Sciences. 2025. Issue 11(42), Part 11

specification and verification. It is worth noting that modern development environments
support both alethic and temporal logics, facilitating their use in the modeling process.

The modeling language must meet a number of requirements specific to CGM as a
real-time software-hardware system. In particular, the language should:

1. Possess a formal semantics that ensures unambiguous specifications and enables
mathematical verification;

2. Support both temporal and alethic logics;

3. Be suitable for modeling behavior within temporal spaces;

4. Provide tools for the formal verification of invariants and properties;

5. Ensure scalability, i.e., the ability of the model to adapt to more complex
architectures (e.g., CLS systems);

6. Remain sufficiently simple for development and testing.

Several commonly used specification and modeling languages were considered—
TLA+, UML, SysML, and Promela. Each has its advantages; however, TLA+ [2-3] proved to
be the most suitable based on the defined criteria.

TLA+ integrates the description of variables, actions, temporal constraints, and
invariants within a single formal paradigm. Specifications in TLA+ allow for the definition of system
behavior in the form of temporal formulas that express necessary or permitted transitions
between system states, while the TLC tool enables automated verification of these properties.

Developing a model in TLA+ involves the formalization of system behavior using
temporal logic formulas. The TLA+ syntax supports a precise and structured description of
system functionality—incorporating variables, actions, and temporal properties [3].

Init

_— .
*17 /" Termination_ticks \\

> Next l«—{ Termination MessageSent |a—
PN \Termlnat\on Inlemlon'ﬂme
\ - 7
-False — ﬂmesei —
¥
| \ / TimeTolnjection)
TimeSetup (nnecanrTime)* Timelipdate
(Timeset'=True) mue i .
Userinterface
HlS!OlyUpdale ‘ (textToUser)
[}
RemoveReading ,:. - L -
(deleteTail) /\ AddReading
[‘_enghk-ME\g;— (New
_/r" element)
t ' 1
L Fal True

Figure 1 — Diagram of the Glucose Monitoring System Model
Source: developed by the authors

The model includes the following components:

1. Variables describing the system state: blood glucose level; indicators of glucose
level exceeding permissible limits; amount of carbohydrates entering the bloodstream; alerts
for insulin administration; informational messages for the user; timestamp of alerts; glucose
level thresholds; critical states triggering emergency alerts; current time.

2. Actions that define CGM functionality, including: glucose level measurement;
checking insulin administration time; generating user alerts; adding new glucose readings;
removing outdated data; updating the current time.

3. Key constraints and invariants: limiting the number of steps in the system;
controlling glucose levels within defined thresholds; guaranteeing the existence and dispatch
of user notifications.

One of the main advantages of TLA+ is its capability to analyze system behavior at a
high level of abstraction. This enables the validation of system performance across different
scenarios and ensures compliance with specifications.

40

ISSN 2664-262X I{enTpanbHOyKpaiHChKUH HayKOBHiA BicHUK. TexHiuni Hayku. 2025. Bum. 11(42), u. 11

Based on the defined requirements, a model diagram was developed, serving as the
foundation for its implementation in TLA+.

In the diagram, rectangles represent functions, diamonds denote conditions, and
rounded rectangles correspond to system requirements. The operation of the system begins
with the initialization of initial variables in the Init function, which are then passed to the
Next function. In the first step, the system time is set and subsequently fixed (as CGM
systems typically operate over a two-week period, resetting the time is not required). The
system then updates based on new glucose level values. If the measurement history exceeds
the allowable length, older entries are deleted; otherwise, a new entry is added, a user
notification is sent, followed by a check of the time for insulin administration and an update
of the current time. In the final stage, the system's requirements are verified, and if all
conditions are satisfied, the system proceeds to the next step.

The model was developed using TLA Toolbox — the official IDE for TLA+, created by
Leslie Lamport and the Microsoft Research team [10]. In the CGM model, user-defined
parameters — such as glucose threshold values or insulin notification times — are treated as constants.
The rationale behind this approach is threefold: (1) the parameters remain unchanged during
system operation, ensuring modeling accuracy and verification reliability; (2) ease of
modification — using constants enables testing the system under various conditions without
altering the core model; (3) formal specification — specification languages are intended for
formally describing system behavior, not for runtime user input during model checking.

To optimize the model and reduce verification load, several simplifications were
introduced. These do not affect verification correctness but significantly lower computational
cost: (1) the glucose level is represented as an integer value; (2) a maximum glucose level is
defined to constrain the value range; (3) the time logging function is simplified, since its
computation is resource-intensive, and in real systems, these parameters are user-provided,
eliminating the need for step-by-step verification.

This approach allows for efficient modeling of CGM behavior and ensures its formal
verification using TLA+.

The developed model includes the following key components [11]:

1. Initialization of variables and constants — the necessary parameters are defined,
including: currentLength — the number of entries in the glucose level history; currentTicks —
the number of executed steps (in most real-world models, the terminal state is determined by a
time limit of two weeks, corresponding to the sensor’s lifespan); message and reminder — user
notification and reminder to administer insulin; IsBad, IsCritical — Boolean variables
indicating whether the glucose level is outside the normal range or has reached critical values.

2. Initialization of the initial state and transitions: the Init function sets the initial
values of the variables; the Next function defines the possible system transitions: at the first
step, the initial time is set, and subsequent transitions are implemented in the HistoryUpdate function.

3. Functional modules of the model: TimeSetup sets a fixed time as a constant and
changes TimeSet to true, preventing further calls to this function; HistoryUpdate adds a new
glucose reading, generates messages, and checks whether it is time to remind the user to
administer insulin. If the allowed history length is exceeded, the oldest entry is deleted;
RemoveReading deletes the oldest reading if the history exceeds the predefined length;
AddReading adds a new glucose level reading and increases currentTicks to simulate system
operation over time; Userlnterface generates user messages based on glucose levels and sets
IsBad and IsCritical values to alert the user or their relatives in case of critical glucose
changes. If sensor data is unavailable, IsBad is set to true, signaling a read error;
SendMessage generates the message text according to the provided parameters;
TimeTolnjection checks whether the current time matches the predefined insulin
administration time. If the condition is met, SendReminder is set to true, triggering a reminder

41

ISSN 2664-262X Central Ukrainian Scientific Bulletin. Technical Sciences. 2025. Issue 11(42), Part 11

for the user. Afterwards, TimeUpdate updates the time, since glucose level measurements by
the sensor are typically performed every minute, making second-level precision unnecessary.

4. Temporal formulas for execution correctness control: Termination Ticks — defines
process termination if the number of performed actions exceeds the predefined limit;
Termination MessageSent — ensures that once a message has been sent, the user will not
receive empty notifications; Termination InjectionTime — checks whether the user has
received a reminder to administer insulin; if the message content is absent, the condition is
automatically considered satisfied.

To verify the correctness of the constructed model, the TLC Model Checker, part of
the TLA+ Toolbox, was used. The model was verified with various sets of parameters, which
included changes to MaxGlucose, MaxHistoryLength, and MaxTicks — the key variables with
the greatest impact on the model’s computational complexity. MaxGlucose defines the
maximum glucose value that can be represented in the system. MaxHistoryLength determines
the length of the stored measurement history. MaxTicks defines the number of time units
during which the system must function.

The model was tested under various input parameter values, some of which are
presented in Table 1. Note: Due to the specifics of specification languages, glucose level is
represented as an integer value, as the current stage of the study focuses on analyzing the
general system behavior across different glucose level zones.

Table 1 — model verification results

CGM system model
. computational | number of
system configuration time states
MaxGlucose MaxHistory Lenght MaxTicks

1 10 1 2000 00:00:15 1.15 % 10°
2 20 1 2000 00:01:07 1.9 x 10
3 20 3 2000 Out Of Memory
4 10 3 200 00:00:28 5.7 %10
5 20 3 200 00:19:234 7.5 % 10
6 CONST 5 2000 00:00:05 8.3 10"
7 10 5 20 00:15:17 4.6 x 10

Source: developed by the authors

The results of verifying the developed CGM model in TLA+ confirmed its correctness
and compliance with the specified formal requirements. In particular, the specification
contains no deadlock states, and all verified temporal formulas hold within the defined state
space. Among the properties tested were the presence of user notifications, the system’s
response to critical deviations in glucose levels, and timely transitions between the system’s
key operational modes.

The developed model represents a foundational stage in the formal verification of
CGM systems and demonstrates the potential of applying formal methods to the modeling of
mission-critical IT systems. The primary practical purpose of the model is to verify the
correctness of the notification logic in a simplified CGM system, which automates glucose
monitoring and reduces the psychological burden on patients. Even in this simplified form,
the model contributes to improving the quality of life for individuals with diabetes by
reducing the need for manual measurements and ensuring timely responses to changes in
glucose levels.

Based on the results obtained and the current structure of the formalized model,
several directions for further extension have been identified:

1. Implementation of algorithms for analyzing glucose trend dynamics;

42

ISSN 2664-262X I{enTpanbHOyKpaiHChKUH HayKOBHiA BicHUK. TexHiuni Hayku. 2025. Bum. 11(42), u. 11

2. Integration of machine learning methods for glucose level prediction based on
historical data;

3. Consideration of additional influencing factors (physical activity, stress, nutrition, etc.);

4. Development of mechanisms for detecting hypo-/hyperglycemia with appropriate
warning logic;

5. Integration with insulin pumps as part of a closed-loop system (CLS) model.

Future extensions of the formal analysis may include the use of other logics (e.g.,
multivalued or modal) as well as verification of more complex properties such as liveness and
fault recovery.

Overall, the CGM model in TLA+ is a promising tool for further research in diabetes
management and opens up broad opportunities for improving and optimizing glucose
monitoring systems.

Conclusions. As part of this study, an adaptive model of a Continuous Glucose
Monitoring (CGM) system was developed, which can be flexibly configured to meet the
specifications of particular systems under verification [14]. Formal methods, particularly
modal logics (temporal and alethic), were employed as a universal toolkit to provide a
mathematically rigorous description of properties such as necessity, possibility, and temporal
dependence. The model was implemented in the TLA Toolbox—an official integrated
development environment for the TLA+ specification language.

The developed specification models the core functional components of a second-
generation CGM system, including temporal constraints, safety invariants, user notification
logic, and measurement history retention. The use of TLA+ enabled a formal definition of
system behavior in a temporal context, ensured the verification of invariants, and facilitated
automated functional verification using the TLC Model Checker.

Verification results confirmed the correctness of the model: it contains no deadlock
states and satisfies all defined temporal properties, thus ensuring its stability and reliability
under various operating scenarios. Notably, the model implements automated logic for
notifying users of critical glucose level deviations, which reduces the cognitive burden on
users and improves the quality of life for individuals with diabetes.

The proposed modular structure of the model is extendable and scalable to the level of
closed-loop systems (CLS), which include automated insulin delivery control. Promising
directions for further development include:

List of References

1. Rafeh, R., Rabiee, A. Towards the design of safety-critical software. Journal of Applied Research and
Technology. 2013. Vol. 11. P. 683-694.

2. Capozucca, A., Guelfi, N. The fault-tolerant insulin pump. Rigorous Development of Complex Fault-
Tolerant Systems. Berlin : Springer-Verlag, 2006. P. 59-75.

3. Lamport, L. Specifying systems: The TLA+ language and tools for hardware and software engineers.
Boston : Addison-Wesley Professional, 2002. 384 p.

4. Wayne, H. Practical TLA+: Planning driven development. New York : Apress, 2018. 221 p.

5. Fainekos, G., Kress-Gazit, H., Pappas, G. Temporal logic motion planning for mobile robots. Proceedings

of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, 2005. P. 2020-2025.

Humberstone, L. Philosophical applications of modal logic. London : College Publications, 2016. 588 p.

Kripke, S. Semantical considerations for modal logics. Acta Philosophica Fennica. 1962. Helsinki. 389 p.

Guéron, J. Time and modality. (Studies in Natural Language and Linguistic Theory ; Vol. 75). Dordrecht :

Springer, 2008. 316 p.

9. Newcombe, C., Rath, T., Zhang, F. et al. How Amazon Web Services uses formal methods.
Communications of the ACM. 2015. Vol. 58, No. 4. P. 66-73.

10. Henzinger, T. A., Sifakis, J. The discipline of embedded systems design. /[EEE Computer. 2006. Vol. 39,
No. 10. P. 36-44.

11. Woodcock, J., Larsen, P. G., Bicarregui, J., Fitzgerald, J. Formal methods: Practice and experience. ACM
Computing Surveys (CSUR). 2009. Vol. 41, No. 4. Article No. 19. P. 1-3.

12. Blood glucose monitoring model: specification and verification. Github: ge6-caiim. URL:
https://github.com/AndrewShysh/ TLAPLUS CGM_System/tree/main (gata 38epaenss: 15.02.2025).

PR

43

ISSN 2664-262X Central Ukrainian Scientific Bulletin. Technical Sciences. 2025. Issue 11(42), Part 11

References

1. Rafeh, R., & Rabiee, A. (2013). Towards the design of safety-critical software. Journal of Applied Research
and Technology, 11, 683—694.

2. Capozucca, A., & Guelfi, N. (2006). The fault-tolerant insulin pump. In Rigorous Development of Complex
Fault-Tolerant Systems (pp. 59-75). Berlin: Springer-Verlag.

3. Lamport, L. (2002). Specifyving systems: The TLA+ language and tools for hardware and software
engineers. Boston: Addison-Wesley Professional.

4. Wayne, H. (2018). Practical TLA+: Planning driven development. New York: Apress.

5. Fainekos, G., Kress-Gazit, H., & Pappas, G. (2005). Temporal logic motion planning for mobile robots. In

Proceedings of the 2005 IEEE International Conference on Robotics and Automation (pp. 2020-2025).

Barcelona: IEEE.

Humberstone, L. (2016). Philosophical applications of modal logic. London: College Publications.

Kripke, S. (1962). Semantical considerations for modal logics. Acta Philosophica Fennica, Helsinki, 389.

Guéron, J. (2008). Time and modality (Studies in Natural Language and Linguistic Theory; Vol. 75).

Dordrecht: Springer.

9. Newcombe, C., Rath, T., Zhang, F., et al. (2015). How Amazon Web Services uses formal methods.
Communications of the ACM, 58(4), 66—73.

10. Henzinger, T.A., & Sifakis, J. (2006). The discipline of embedded systems design. IEEE Computer, 39(10), 36-44.

11. Woodcock, J., Larsen, P.G., Bicarregui, J., & Fitzgerald, J. (2009). Formal methods: Practice and
experience. ACM Computing Surveys (CSUR), 41(4), Article 19, 1-3.

12. AndrewShysh. (2025, February 15). Blood glucose monitoring model: Specification and verification
[GitHub repository]. GitHub. https://github.com/AndrewShysh/TLAPLUS CGM_System/tree/main.

® =

O. B. lllmmankka', kauz. ¢is.-mar. ayk, JI. I1. Mariliuyk’, o1, 1-p ekoH. Hayk, A. B. Illnmaubkuii'
'Kuiscokuii nayionanonuii ynisepcumem imeni Tapaca Ilesuenka, m. Kuis, Yrpaina
*Teproninbcokuii nayionansnuti mexuivnuii ynisepcumem iveni leana Iymios, m. Teproninw, Yipaina
Crnenudikauis Ta Bepudikanisa ¢gopMaibHOI Moei CHCTEMH PeajbHOro yacy
i3 Bukopucrannsm TLA+

Y poborti npeacTaBieHO po3poOKy GOpMaTbHOI MO MPOTPaMHO-aNapaTHOI CHCTEMH PEANbHOTO Yacy
Ha MpHKJIANi cucTeMu Oe3rnepepBHOrO MOHITOpUHTY piBHs ritoko3u (Continuous Glucose Monitoring, CGM).
CGM-cucreMu € KpUTHYHO BaXIIMBUMHU [T-pilieHHSIMH, [0 BUKOPHCTOBYIOTHCS B MEJUYHOMY CEPEIOBHILI IS
MOCTIMHOTO BHMIPIOBaHHS PiBHS IJIIOKO3U B KPOBI Ta CBOEYACHOTO CIIOBIIIEHHS KOPUCTYBadiB. 3 OIJILy Ha
nenanxi mmpme BrpoBamkeHHs CGM y 3amkaeHi koHTypu kepyBaHHs (Closed-Loop Systems, CLS), ski
aBTOMATHU3YIOTh BBEJICHHS IHCYJIIHY, 3pocTae morpeda y 3a0e3neyeHHI KOPEKTHOCTI TaKMX CHUCTEM, OCOOJIHMBO
BPaxOBYIOUH TOMMYJSPHICTh HEMEPEBIpEHUX pIllleHb, CTBOPEHHX KopucTyBadamm camoctiiiao (DIY). Ilompu
JIOCSTHEHHS B Taiy3i (i3UYHUX Ta CEHCOPHHUX TEXHOJOTIH, mporpamue 3adesmneucHHs CGM-cucreM 4acto He
Mae (opmampHUX crenudikaniii ta mepeBipok. lle cTBOproe pm3mkm y mepenbaduyBaHOCTI, Oe3memi Ta
HaJIHHOCTI, MO € 0COONMBO KPUTUYHUMH y MEIHYHUX 3aCTOCYBaHHSAX. METOI0 TOCTIKEHHS € 3aCTOCYBAaHHS
(dopmabHUX MeToniB, 30kpeMa TLA+, mis crenudikaiii, MoaenroBaHHs Ta Bepudikamii moBemginku CGM-
CHCTEMH, 110 (PYHKIIOHYE B PEKUMI PEaTbHOTO Yacy.

3ampornoHoBaHa MOJIENb ONMUCYE OCHOBHI KommoHeHTH CGM-cucremu: IMKIM BHUMIDIOBaHHS B 4aci,
30epeXeHHs ICTOPUYHUX NaHWX, BHUABJICHHS ITEPEBUIICHb IMOPOTOBHX 3HAYEHB 1 JIOTIKYy CHOBIIIeHHSA. Takox
MoJieb (iKCy€e iIHBapiaHTH CHCTEMH, 30KpeMa IPaBHIIbHY ITOCIIIOBHICTD MEPEXO0/IiB Mi>K CTaHAMHU Ta CBOEYACHE
reHepyBaHHs crosimenb. Jns peamizamii o6pano TLA+, mo IpyHTYeThCS Ha TEMIIOPAlbHIA Ta MOTAIBHIN
JIoTiLi, MATPUMYE MOJAETIOBaHHS KOHKYPEHTHHX Ta PEaKTHBHHUX CHUCTEM i Ma€ MOTY)XKHI IHCTPYMEHTH, 30KpeMa
nepeBipky moneneit TLC. Mogens peamizoBaHo Ta mportecToBaHO 3a gomomororo TLA+ Toolbox i TLC.
PosrisiHyTO KibKa KOH(Irypatii (IToporoBi 3Ha4eHHsI TIIOKO3H, JIOBKHHA iCTOPil, TPUBAIICTH POOOTH CHCTEMH)
JUTA OLIHKY i cTifKocTi. PesynpraTté Bepudikamii 3aCBiAYMIN BiICYTHICTh TYITUKOBHX CTaHIB i BAKOHAHHS BCiX
3aJjaHuX BiacTHBOCTell Oesnexu. Lle minTBepKye MOUINBHICTE BUKOPHCTaHHS ()OPMAIBLHOTO MOJETIOBAHHS B
TLA+ ms xopektHOCTI CGM-crctem, 0COOMMBO B YMOBAaX, 1€ KPUTHIHUMHU € O€3Me4HICTh, MPaBMIBHICTD Ta
BiZICIIIKOBYBaHICTh. MojynbHa CTPYKTYpa MoJeli 3abe3nedye MOXKIMBICTD ii MTOJANBIIOrO PO3IIMPEHHS —
BKJIIOYEHHS QJITOPUTMIB MalIMHHOIO HAaBYaHHS [UIS IPOTHO3YBAaHHS DIBHS TJIIOKO3W, MOJCTIOBAHHS BIUIUBY
¢iznyHOi aKTMBHOCTI a0 XapyyBaHHS, a TaKOXX MOCTYIOBMH Nepexii A0 IMOBHiCTIO aBToHOMHHMX CLS-
cepenoBum. Kpim Toro, 11 poboTa crpuse MOMUPEHHIO MPAKTHK (GOPMAaIbHOI crienn@ikallii B KOMIT I0OTepPHUX
HayKax, 30KpeMa B Tajly3i CUCTEM pPeajbHOTr0 Yacy Ta KPUTUYHO BAXKIMBUX 3aCTOCYHKIB.
cucreMn peajbHoro 4acy, CGM, mMoneab, ¢opMajibHi MeTOAM NMPOEKTYBaHHS, crnemudikanisa, TLA+,
Bepudikamis

Ooepoicarno (Received) 17.03.2025 Ipopeyenszosano (Reviewed) 27.04.2025
Ipuiinamo 0o opyky (Approved) 06.05.2025

44

