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Modeling the Stochastic State Matrix of a Production
Line for Optimize its Operational Reliability Using
Reinforcement Learning

The development of a production line state determination model aims to create a universal tool for
evaluating and optimizing industrial systems. The proposed approach enables real-time analysis of equipment
states, prediction of potential failures, and enhancement of overall operational efficiency.

The use of Markov chains allows for precise modeling of the sequence of production line states and the
probabilities of transitions between them. This stochastic approach improves adaptability to real-world
manufacturing conditions, surpassing the capabilities of traditional deterministic methods.

The formation of a stochastic state matrix optimizes production processes through advanced data
analytics and Al integration. This enables manufacturers to minimize downtime, enhance resource allocation,
and improve overall productivity while maintaining operational stability.

Transition probability estimation is based on both historical databases and real-time sensor
measurements, allowing the model to adapt to various equipment types and operating conditions. Al-driven
optimization enhances failure prediction accuracy, ensuring the production line remains efficient under diverse
scenarios. By integrating Markov chains with data-driven insights, the approach supports proactive failure prevention
and strategic resource management, ultimately improving the reliability and performance of industrial systems.
production line, Artificial Intelligence, production automation, Markov chain theory, stochastic matrix

Problem Statement. The theory of reliability is a crucial component in the
implementation of various technical processes, particularly in the functioning of production
lines. High reliability ensures the continuity of the production process and minimizes the
risks of failures and downtime [1]. One of the effective approaches to studying reliability is
the Markov chain theory, which allows for accurate description of the states of production
lines and modeling processes to assess their reliability [2]. The use of Markov chains helps
identify potential failure points and optimize maintenance, significantly improving the
overall efficiency of the production system.

The optimization of modern production lines requires the implementation of advanced
technologies, particularly artificial intelligence. Al can significantly enhance the productivity
and flexibility of production processes. Reinforcement learning (RL), as one of the most
powerful Al techniques, allows systems to learn independently and make decisions based on
received feedback [4, 5, 6]. This is particularly useful in production lines where rapid
adaptation to changing conditions and optimization of operating parameters are necessary.

Modeling production lines based on the RL method allows achieving high reliability
and stability. Thanks to the self-learning capability of RL algorithms, the system can not only
maintain an optimal operating mode but also continuously improve its performance. Thus, the
integration of artificial intelligence (Al) into the production process opens up new horizons
for improving the efficiency and reliability of modern production lines.

Analysis of Recent Research and Publications. The reliability of an object is defined
by its ability to maintain within specified limits the values of all parameters that characterize
the object's ability to perform required functions under given operating modes and conditions,
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maintenance, repair, storage, and transportation [1, 2]. Reliability is a complex property that
depends on the product's purpose and application conditions. It consists of a combination of
properties: reliability, durability, maintainability, and storability.

Durability, reliability, maintainability, and storability are the main parameters that
determine the reliability of a production line. These parameters account for various aspects of
equipment operation and help assess its ability to perform assigned functions over a long
period. According to stochastic theory, these parameters are considered random variables that
follow certain probabilistic distribution laws. Reliability can be evaluated by the probability
of no failure over a specified period, typically described by an exponential distribution [1]:

P(t) = exp(—At), (1)
where P(t) - is the probability of no failure by time ¢,

A - is the failure rate.

Maintainability is evaluated by the equipment's ability to quickly recover after a failure
occurs. The mean time to repair is a critical metric in this context and is defined as the
average time required to repair and restore the system to operational status. Durability
describes the overall operational lifespan of the equipment until significant wear necessitates
replacement or major overhaul. Storability reflects the equipment's ability to maintain its
operational characteristics during prolonged storage or transportation. All these parameters
are considered in stochastic reliability models, where, for example, the time to failure can be
described by a gamma distribution [1]:

Aktk—lexp(-at
o) = =200 2)
where f(t) - represents the probability density function,

t - is the time,

A - is the rate parameter, and

k - is the shape parameter.

Such an approach allows predicting the behavior of the production line and optimizing
processes to improve its reliability. In the context of Markov chains, the reliability of a
production line is determined through modeling the system states and transitions between
them. The main idea is that the state of the system at any given moment depends only on its
previous state and does not depend on how the system reached the previous state. This
simplifies the analysis and evaluation of reliability [1, 2].

When applying Markov models to assess the reliability of a production line, possible
states of the equipment, such as operational state, partial or complete failure, and transitions
between these states are considered. The probabilities of transitions between states are
determined based on statistical data on the reliability of components and the system as a
whole.

Markov models allow determining such characteristics as mean time to failure, mean
time to repair, and other reliability indicators. These models are also used to predict the
system's behavior over time, which helps in planning maintenance and repairs [3].

As a result, Markov chains provide an effective tool for analyzing and modeling the
reliability of production lines, enabling informed decisions to improve the efficiency and
reliability of production processes [10].

RL allows systems to learn through interaction with the environment, receiving
rewards for correct actions and penalties for mistakes [11]. The main components of this
method are the agent, environment, actions, states, and rewards. The agent makes decisions
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(actions) based on its current state in the environment and receives feedback in the form of
rewards or penalties, allowing it to learn an optimal strategy.

The conceptual implementation of the RL method in a production line includes the
following aspects:

Agent - this is the production line management system that makes decisions regarding
its operation. For example, it could be a program that controls the operation of robotic
manipulators or conveyor belts.

Environment - this is the production process, which includes all components and
operations performed on the production line. This can include both physical processes
(movement of parts, assembly) and logistical processes (inventory management, production
planning).

Actions - these are specific operations or commands that the agent performs to achieve
the goal. For example, changing the speed of the conveyor, adjusting equipment parameters,
or initiating additional processes.

States - these are the current conditions or configurations of the production line, such
as equipment status, inventory levels, or the number of produced products. Each state
provides the agent with information about the current situation on the line.

Rewards - these are metrics that reflect the efficiency of the production line. They can
include the amount of produced products, production speed, waste minimization, or downtime
reduction.

Modeling a production line using RL allows the agent to optimize processes,
increasing the reliability and efficiency of operations. The agent learns through trial and error,
receiving feedback in the form of rewards or penalties, and gradually improving its
management strategy for production processes.

Task Definition. The research methodology for assessing the reliability of a
production line by integrating Markov theory and the RL method consists of several key
stages (Fig. 1).

The first stage involves developing a state matrix according to
Markov theory, which allows modeling varous states of the
production line and transitions between them. To achieve this, it is
necessary to collect statistical data on the probabihties of transitions
between states and the duration of each state. Based on these data,
a stochastic transition matnx is formed, which serves as the basis
for further modeling and reliability analysis of the system.

<~

The second stage of the research involves applying the
remforcement leaming method to optimize the reliability of the
production line. The reinforcement learning agent interacts with the
stochastic model of the production line, making decisions about
actions aimed at minimizing the probability of failure and
optimizing the system recovery process. The agent receives
feedback in the form of rewards or penalties for the decisions made,
allowing it to gradually improve its management strategy.

Figure 1 - Diagram of the methodology for assessing the reliability of the production line

Source: developed by the authors
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In the course of the research, a model for determining a stochastic matrix has also been
proposed, which assumes that the system consists of elements whose states are described by a
stochastic distribution. Some elements of the system can be described using the classical
approach, which takes into account databases and statistical regularities, while other elements
can be described by parameters that correlate with reliability. This allows for more accurate
formation of the stochastic matrix and considers all aspects of the production line's reliability.

Presentation of the Main Material. Thus, the methodology of this study includes data
collection, development of Markov models, application of RL methods for reliability
optimization, and formation of stochastic matrices for comprehensive system analysis. This
approach provides a detailed understanding of the production line's functioning and develops
recommendations for enhancing its reliability.

To determine the stochastic matrix, a model is proposed that represents the production
line as a system consisting of various nodes. Each node of this system can be described in
terms of classical reliability concepts, which include the analysis of reliability, durability,
maintainability, and storability. For such nodes, a standard approach is used, based on
collecting statistical data on failures and calculating reliability indicators from historical data.

Another type of node in this model involves a more modern approach, which includes
measuring the operational parameters of nodes that directly correlate with reliability. This
allows obtaining up-to-date data on the condition of each node in real-time. Using these data,
stochastic state matrices are formed, reflecting the probabilities of transitions between
different states of the nodes. This enables more accurate modeling of the production line's
behavior and making decisions regarding its reliability optimization.

Thus, the proposed model provides a comprehensive approach to assessing the
reliability of the production line, combining classical analysis methods with modern
monitoring and data processing techniques. This not only allows predicting possible failures
but also actively influencing management and maintenance processes to improve the
efficiency and stability of the production line.

One of the approaches considered for finding parameters that correlate with the
reliability of system nodes is acoustic spectral analysis, including ultrasonic. This method is a
powerful tool for determining parameters that correlate with the reliability of production line
nodes. The algorithms of this method include collecting sound data from equipment
components using sensors that measure acoustic vibrations. Spectral analysis is performed by
transforming the time signal into the frequency domain using mathematical methods such as
polynomial regression and discrete Fourier transform [15]. This allows identifying
characteristic spectral components that reflect the node's state.

The idea behind determining the state of a node based on its characteristic spectra is
that different equipment states have unique acoustic signatures. For instance, a normally
functioning bearing generates a specific sound spectrum, while a bearing with defects
produces additional harmonics or noises at certain frequencies. Ultrasonic analysis enables the
detection of high-frequency components that might be undetectable by traditional acoustic
methods. This is particularly useful for diagnosing microscopic cracks, wear, or other initial
damages that slightly affect the overall sound signal but are crucial for predicting future
failures.

Using acoustic spectral analysis, one can create a model that includes stochastic state
matrices of nodes, which reflect the probabilities of transitions between different states based
on the obtained acoustic characteristics. Such models allow for the timely identification of
potential problems and optimization of maintenance schedules, significantly enhancing the
reliability and efficiency of the production line.
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To conduct acoustic spectral analysis on production line nodes, it is necessary to
integrate appropriate equipment that allows for high-precision measurements of acoustic
characteristics. This includes installing sensors and transducers capable of capturing both
sound and ultrasonic vibrations. Sensors are typically placed on key components of the
production line where mechanical failures or wear are possible. Proper sensor placement is
crucial for obtaining the most accurate data.

After collecting acoustic data, spectral analysis is performed using mathematical
algorithms. One of the most common methods is the Fourier transform, which converts a
time-domain signal into a frequency spectrum:

X (k) = ¥t x(n) exp(—j (o /kn)) 3)
where x(n) - is the input signal,

(k) - 1s the output spectrum,

N - is the number of points in the signal, and

J - is the imaginary unit.

The Fast Fourier Transform is a more efficient implementation that reduces
computational complexity. Additionally, approximation methods such as wavelet transforms
can be used, allowing the analysis of signals with varying frequency resolutions.

The physical and technical aspects of implementing acoustic spectral analysis include
the high sensitivity of sensors to vibrations and noise, as well as their ability to operate under
conditions of high temperature and humidity. Ultrasonic sensors have the added advantage of
detecting microscopic defects that are not accessible by conventional acoustic methods.

The results of spectral analysis allow the creation of node state models used for
predicting failures and optimizing maintenance. This ensures increased reliability and
efficiency of production lines.

Acoustic spectral analysis can be conducted at various frequencies, depending on the
research purpose and the type of object. Ultrasonic analysis is particularly effective in
detecting defects that do not yet affect the overall performance of the equipment but may
cause serious problems in the future.

Here is the algorithm for forming a stochastic state matrix of a node based on acoustic
spectral analysis is shown in Fig. 2.

This algorithm helps in forming a stochastic matrix that accurately reflects the
probabilities of transitions between different states of the node based on acoustic data. The
formula for the stochastic transition matrix is shown in (4).

Let P={Pij} be the stochastic matrix, where Pij is the probability of transitioning from
state i to state j:

N..
Pij =57
2j=1 ij

4)
where Nij - is the number of observations of the transition from state i to state j,
n - is the total number of states.

In addition to acoustic spectral analysis, there are several other methods that allow
measuring parameters correlated with the reliability of production nodes. One such method is
temperature field measurement. This method helps detect overheating or uneven temperature
distribution in individual equipment nodes, which can indicate wear or malfunctions.
Temperature sensors are placed at critical points on the equipment, and the obtained data are
analyzed using thermography or other mathematical methods to identify anomalies and their
causes.
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Video surveillance and motion pattern recognition is another important method. High-
resolution cameras are installed at key points of the production line, allowing real-time
tracking of node movements. Special image processing algorithms, particularly machine
learning methods, are used to recognize motion patterns and detect deviations from normal
operating conditions. This enables timely identification of potential failures and decisions

regarding their resolution.

Data Collection:

Install sensors on key nodes of the production line to collect acoustic
signals.

Collect data over a defined period. including both normal operating
conditions and various failure states.

<~

Signal Processing:
Use Fast Fourier Transform (FFT) algorithms to convert acoustic
signals from the time domain to the frequency domain.
Identify characteristic spectral components that correspond to different

node states.

State Classification:
Use machine learning to classify acoustic signals into different states
(e.g.. normal operation, initial wear, significant defect).
Prepare a training dataset with labels for each state.

<~

Probability Estimation:
Analyze the data to determine the probabilities of transitions between
different states of the node.

Use historical data and learning models to estimate the frequencies of
transitions between states.

Stochastic Matrix Formation:
Form the stochastic transition matrix based on the estimated
probabilities of state transitions.

Ensure that the probabilities in each row of the matrix sum to 1.

ags

Model Validation:

Validate the resulting stochastic matrix with new data to assess its
accuracy and reliability.

Make necessary cormrections based on test results.

g

Figure 2 - Diagram of the algorithm for forming a stochastic state matrix
Source: developed by the authors

The method of current dipoles involves measuring the electrical characteristics of the
equipment, such as resistance, inductance, and capacitance. These parameters can change
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depending on the condition of the nodes, allowing the identification of defects or wear. The
application of current dipoles is particularly effective for diagnosing electromechanical
systems and identifying potential problems at early stages.

Hardware neural networks, or embedded Al systems, are used to analyze large volumes
of data collected from various sensors. These networks can detect complex dependencies and
patterns correlated with the equipment's reliability. Thanks to self-learning algorithms, neural
networks can continuously improve their predictions and recommendations, enhancing the
overall efficiency and stability of the production line.

These methods allow for a comprehensive assessment of the state of production nodes
and making informed decisions regarding their maintenance and repair, significantly
increasing the reliability of production processes.

Conclusions.

1. A comprehensive approach to assessing and optimizing the reliability of production
lines, based on a combination of Markov models and RL methods, has been applied.

2. A model has been developed that represents the production line as a system
composed of nodes, each of which can be described using classical methods and stochastic
models/

3. It has been shown that the use of Markov chains allows for accurate determination of
the probabilities of transitions between the states of nodes, which contributes to a more
detailed analysis and prediction of reliability.

4. It has been found that the application of the RL method allows optimizing the
operation of production lines through agents' self-learning based on the data obtained about
their states and operation. This enables effective responses to changing operating conditions
and improves management strategies, thereby enhancing the overall stability and efficiency of
the production process.

5. Various methods for measuring parameters correlated with reliability, such as
acoustic spectral analysis, temperature field measurement, video surveillance and motion
pattern recognition, the method of current dipoles, and the use of hardware neural networks
have been proposed. These methods allow creating detailed state models of nodes, ensuring
accurate and timely identification of potential failures.
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MopenoBaHHA CTOXaCTHYHOI MATPHILi CTAHIB BUPOOHUYOI JIiHIl 1A onTuMi3anii il

eKCIIYyaTANiHOI HAXIIHOCTI 32 10MOMOI 0K HABYAHHSA 3 NIAKPINIeHHAM

OCHOBHOIO METOI0 pO3pOOKH MOJIENi BHM3HAUYEHHs CTaHy BUPOOHHMYOI UJiHIT OyJl0 CTBOpPEHHS
YHIBEpCAJIbHOTO I1HCTPYMEHTY, 3[aTHOTO aHaJi3yBaTH Ta ONTHMI3yBaTH Oynb-sIKy IPOMHUCIOBY BHPOOHHUIY
miHito. Mogenb po3pobieHa sl ePEeKTUBHOI OIIHKKM poOOYMX CTaHIB BHPOOHMYOTO OOJAgHAHHSA,
MPOTHO3yBaHHS MOTEHLIIHMX 3001B Ta pEKOMEH/IAIIIN I110/J0 KOPUTYBAILHUX JIiil UIs MiABUILEHHS HAAIHHOCTI Ta
e(eKTUBHOCTI. 3aBIIKH BUKOPHCTAHHIO MaTEeMaTHYHUX METOMIB Ta METOAIB HAa OCHOBI IITYYHOTO IHTENEKTY,
miaxig 3a0e3nedye aganTUBHICTD IO PI3HUX THIIIB BUPOOHHUYUX CHCTEM, IO pOOUTH HOTO 3aCTOCOBHUM Y Pi3HHX
rajy3sx MpPOMHUCIOBOCTI.

Mozens BuKOpHCTOBYE sTaHIforn MapkoBa Juisi TOYHOrO HPEICTABICHHS TOCI1i10BHOCTI BUPOOHHYMX
CTaHIB, BKJIIOYAIO4H I/lMOBlpHICHI/lI/l Xapakrep NepexoiB Mix OHepaull/IHI/lMl/I ¢azamu. Ha Binminy 31)1
Tpa[ll/l]_III/IHI/lX IleTeleHlCTl/I'-IHI/IX MOI[eJ'lel/I 3aHpOHOHOBaHI/II/I Hl}leH BpaxoBye peaﬂle HeBI/l3Ha'-IeHOCT1
BJIACTHBI BHUPOOHMYMM IIpollecaM, IO JO3BOJIE TOYHILIE MPOrHO3YBaTH IOBEIIHKY CHCTEMH. [HTerpariis
CTOXAaCTUYHOTO aHAJi3y PO3MHPIOE MOXKIUBOCTI MOJENIOBAHHS CKIAJHUX POOOYMX IMPOLECIB, MOKPAIIYyIOUH
MPUAHATTA PIllICHb Ta OI[IHKY PU3HKIB Y IPOMHCIOBOMY CEPEIOBHIIII.

Meton ¢popMyBaHHS MAaTPHIIi CTOXaCTUYHUX CTaHIB 3a0e3meuye KOMIUIEKCHY CHCTEMY OIITHUMI3allii s
BUPOOHHYMX CHCTEM, BUKOPUCTOBYIOUH CydacHY aHAJITHKY JaHUX Ha OCHOBI IITY4HOTO iHTeNeKTy. Llei miaxin
HaJla€ BUPOOHMKAM IHCTPYMEHT JUIsl TIOKpAIlIEeHHsI 4acy 0e3BiAMOBHOI poOOTH, CKOPOUYEHHS MPOCTOIB Ta OLIbLI
e(eKTHBHOTO PO3IMOLTY PECYPCIB. AIANTHBHICTH MOZEI B PEXKUMI PEAIBHOTO Yacy rapaHTye, 10 MPOMHUCIIOBI CUCTEMU
3aJIMLIAIOTHCS Yy TIAMBUMHU 10 TUHAMIYHUX YMOB, ONITHMI3YIOUH ITPOJLYKTUBHICTh Ta MiHIMI3yI04H 11epedoi.

Mozesnb yCHILIHO OLiHIOE HWMOBIPHOCTI TEpeXojy Ha OCHOBI SIK ICTOPUYHHMX 0a3 IaHUX, TaK 1 JaHUX
JATYUKIB y pealbHOMY 4aci, IO J103BOJIsL€ ill ajanTyBaTHcs [0 IIUPOKOTO CIIEKTPY THIIB OOJIaHAaHHSA Ta YMOB
ekcruryarariii. Ll amanTWBHICTH WiABHINY€ TOYHICTP HPOTHO3YBAaHHSI NOTCHHIKHUX 3001B Ta omTHMI3arii
BUPOOHMYHMX pobOoumx mporeciB. KpiM Toro, Meronn HaBYaHHS 3 MiAKPIIUIEHHSIM OTIOMATalOTh ITOKPALIUTH
NPOJIYKTUBHICTh CUCTEMH IIUIIXOM ITOCTIHHOTO BJIOCKOHAJIEHHS OINEpAaIlifHUX CTpaTerii, 3HMXEHHS PU3HKIB Ta
HiATpUMKH Oe3repebiiHoT poOOTH HaBiTh 32 3MIHHUX BUPOOHWYHX CLIEHapiiB.

3aBasku iHTerpamii JaHIorie MapkoBa Ta aHAJIITHKM Ha OCHOBI JNAHHX, 3alpPOIOHOBAHHMA ITiJXiJ
JIO3BOJISIE PAHHBO BUSIBJISITH MOTEHLINHHY Hee(beKTHBHiCTL Ta cucTeMaTH4Hi 300i. BiH normomarae BUpoOHUKaM
NPOTHO3YBATH KPUTHYHI IHUMJACHTH Ta ONTHMI3YBAaTH NPOLECH NPHIHSATTA pilllcHb, LIO TMPH3BOJHTH IO
MiJABUIICHHS [POAYKTUBHOCTI, 3HWKCHHS BUTPAaT Ha o6cnyr03yBaHH;1 Ta INiJBHINEHHS HaJIMHOCTI Ha
BUPOOHHWYHX JiHIAX. 3PEIITOI0, MOJEINb CIPUSIE PO3POOIl BUCOKOCTIHKAX MPOMHUCIOBUX CHCTEM, 3a0e3Medyroun
cTabuTbHY poOOTY Ta €PEeKTUBHICTH 3a PI3HIUX YMOB €KCIDTyaTallii.

BHUPOOHMYA JIiHifA, IITYYHUH iHTeNeKT, aBTOMATH3alliA BUPOOHULTBA, JaHIIOrH MapKoBa, CTOXaCTHYHA
MaTpuus
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