ISSN 2664-262X Central Ukrainian Scientific Bulletin. Technical Sciences. 2025. Issue 11(42), Part I

UDC 004.8 https://doi.org/10.32515/2664-262X.2025.11(42).1.14-26

Mykola Zlobin, Volodymyr Bazylevych, Assoc. Prof., PhD econ. sci.
Chernihiv Polytechnic National University, Chernihiv, Ukraine
e-mail: mykolay.zlobin@gmail.com, bazvlamar@stu.cn.ua

A Data-Driven Approach for Balancing Overfitting
and Underfitting in Decision Tree Models

This article aims to develop a data-driven framework for balancing overfitting and underfitting in
decision tree models. Overfitting occurs when a model captures noise, reducing generalization, while
underfitting leads to poor predictive accuracy. The study systematically tunes the max leaf nodes parameter and
evaluates model performance using Mean Absolute Error (MAE). The objective is finding the most optimal
balance that ensures model accuracy while preventing excessive complexity.

A Decision Tree Regressor has been trained on the Ames Housing dataset, which includes 79
explanatory variables related to home prices. The dataset has been splitted into training and validation sets. The
model has been evaluated by iterating over different max leaf nodes values, ranging from 2 to 5000, and
computing the MAE for each configuration. The results show that increasing max_leaf nodes initially improves
accuracy, but beyond 400 nodes, MAE stabilizes around 242,906, indicating that further complexity does not
improve performance. The paper highlights that models with too few leaf nodes underfit the data, while models
with too many leaf nodes overfit, capturing spurious patterns. To mitigate this, systematic hyperparameter tuning
is employed to find the optimal configuration. The impact of cross-validation, pruning, and tree depth constraints
on model generalization is also explored. The findings suggest that selecting an appropriate max_leaf nodes
value prevents overfitting while maintaining strong predictive power. Further statistical analysis confirmed that
models with excessive complexity tend to have higher error fluctuations, reducing their reliability. The analysis
of the bias-variance tradeoff revealed that beyond 400 leaf nodes, variance increases while MAE stabilizes,
suggesting diminishing returns from additional complexity.

The paper shows the importance of structured hyperparameter tuning in decision tree models. The
optimal max_leaf nodes value is found at 400. The framework is adaptable to other machine learning models
where MAE can be used to evaluate performance across different parameter settings. For instance, in Random
Forest models, the trees’ number can be optimized similarly. The results emphasize that tuning model
complexity is essential to achieve accurate predictions while avoiding overfitting. Future work should explore
the integration of automated tuning algorithms and ensemble methods to improve decision tree performance.
decision tree regressor, overfitting, underfitting, model optimization, hyperparameter tuning

Problem statement. The challenge of achieving accurate predictions in machine
learning models is obstructed by the issue of overfitting and underfitting. The overfitting
happens when a model captures noise in training data, which leads to poor generalization on
unseen data. On the other hand, the occurrence of underfitting occurs when there is a too simple
model to learn the underlying patterns, which results in poor predictive performance. Finding
the optimal balance between these two extremes is needed in order to build a reliable model.

To address this challenge, the following research tasks are formulated: 1) Investigate
the impact of model complexity (controlled by the max_leaf nodes parameter) on overfitting
and underfitting in a Decision Tree Regressor; 2) Systematically evaluate the performance of
the model using MAE as the primary metric, across a range of max_leaf nodes values;
3) Identify the optimal configuration of max leaf nodes that balances predictive accuracy with
model generalization; 4) Examine additional technique such as cross-validation, pruning, and
depth constraints to further improve model performance; 5) Propose a structured hyperparameter
tuning framework that can be generalized to other machine learning models beyond decision trees.

© M. M. 3100in, B. M. bBazuiesuu, 2025

14



ISSN 2664-262X I{enTpanbHOYKpaiHChbKKi HayKOBHH BicHUK. Texuiuni Hayku. 2025. Bumn. 11(42), u. |

Analysis of recent research and publications. Recent research has analyzed the
challenges of underfitting and overfitting in decision tree models. A study [1] investigated
strategies to minimize underfitting and overfitting in regression tree models using remotely
sensed data. The researchers developed an approach to identify optimal sample of usage of
data and rule numbers that improve model accuracy. They found that using 80% of the data
for training and allowing 6 rules in the regression tree resulted in the lowest prediction errors,
with a mean absolute difference of 2.5 for training and 2.4 for testing. This configuration was
recognized as the optimal model, effectively balancing complexity and generalization. In
another study [2], scenarios were analysed where models exhibited overconfidence or
underperformance, in high-dimensional data with limited sample sizes. The importance of
practices that prevent, test, and correct overfitting and underfitting was emphasized. It was
highlighted that overfitting often arises in complex models trained on small datasets, which
leads to high variance and poor generalization. Techniques such as cross-validation and
regularization to mitigate these issues were proposed. The regularization techniques L1 and
L2 penalties were shown to control complexity and improve stability. A study [3] addressed
overfitting in decision trees by proposing a Bayesian decision-theoretic approach. The authors
noted that traditional decision tree methods suffer from overfitting due to their flexibility in
modelling data. This approach involved representing decision trees as stochastic data
observation processes and deriving statistically optimal predictions based on Bayesian
principles. The results indicated that this method outperformed traditional decision trees by
reducing variance by 17% while maintaining model interpretability. This method aimed to
achieve predictions while avoiding overfitting, even in complex data scenarios. Also, Zhang
et al. [4] introduced cascading decision trees to address the issue of overfitting associated with
deep decision paths. The process of separating the decision path from the explanation path
was proposed, resulting in shorter explanation paths and improved test accuracy. The
experiments showed that this method reduced overfitting against missing values. The study
reported an 8.3% improvement in test accuracy. Additionally, setting constraints like putting
the limits for the maximum depth of the tree or for instance to demand a min. number of
samples per leaf can omit the model not to become too complex. A study [5] recommended
finding the targeted records’proportion in a leaf node to be between 0.25% and 1.00% of the
training dataset to avoid overfitting and underfitting. Cross-validation methods are also
employed to make an assessment of the performance of the model on different data subsets, to
provide that it has good generalization to unseen data. An article [6] emphasized the role of
cross-validation in mitigating overfitting by the process of evaluation of the performance of
the model performance on multiple train-test splits. The domain-specific study [7] examined
overfitting and underfitting in the context of fire incident predictions. The research found that
linear regression models tended to underfit the data, failing to capture essential patterns, while
decision tree models often overfit, capturing noise and leading to poor generalization. To
mitigate overfitting, pruning techniques have been recommended [8]. Pruning involves
cutting back the tree to prevent it from becoming overly complex, thereby improving its
generalization capabilities. Also, a survey of decision tree concepts and algorithms published
in 2024 discusses the impact of aggressive pre-pruning parameters, noting that while they can
prevent overfitting, they may also lead to underfitting if not carefully calibrated [9]. While
pre-pruning effectively prevents overfitting, the study cautioned that it may also lead to
underfitting if thresholds for node splits are set too high. The research found that setting the
minimum sample size per leaf node to at least 20 observations provided the best balance
between performance and interpretability.

In order to highlight the new methods used for overfitting and underfitting the paper
[10] should be also analysed. The paper focuses on Forestprune as new approach of post-
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processing tree ensembles by the process of pruning depth layers from individual trees rather
than removing entire trees. This method improves model compactness while preserving
predictive accuracy. The framework usess a block coordinate descent algorithm that
efficiently finds high-quality pruning solutions, reducing computational overhead compared
to traditional ensemble post-processing techniques. Experimental results show that depth-
layer pruning leads to more parsimonious models, achieving substantial reductions in
ensemble size without any significant performance loss. FORESTPRUNE outperforms
existing pruning strategies in both bagging and boosting ensembles by dynamically adjusting
tree complexity, and offer a solution for balancing overfitting and underfitting. This
framework improves interpretability by producing compact tree ensembles. Recent findings in
cost-sensitive machine learning have emphasized the importance of optimizing prediction-
time efficiency while maintaining high classification accuracy [11]. This paper introduced a
new framework that supports feature computational dependencies to improve classification
performance while reducing runtime. It demonstrated that traditional cost-sensitive learning
methods fail to consider redundant computations across different features, leading to
inefficiencies in test-time predictions. The heterogeneous hypergraph representation of feature
dependencies was introduced, to enable a structured approach to identifying shared
computations. The framework incorporated a nonconvex optimization method to jointly
minimize classification error and prediction-time cost, using a re-weighted {p quasi-norm (p
= 1/2 and p = 2/3) for efficient feature selection. By leveraging these techniques, they
achieved a 17% reduction in variance while maintaining interpretability compared to
traditional decision trees. In real-world datasets, this framework was tested on network traffic-
flow data for intruder device detection, consisting of 35,143, 31,374, 10,000, 21,225, 27,024,
and 132 samples, respectively, across six datasets. Feature generation times ranged from
0.464 microseconds for maximum feature extraction to 14.917 microseconds for skewness
computation. The proposed method reduced the total runtime by up to 29%, with CAFH (p =
2/3) achieving the lowest computational cost while maintaining high accuracy. The analysis
done by Park and Ho [12] introduces PaloBoost, a new regularization method designed to
mitigate overfitting in Stochastic Gradient TreeBoost models, for noisy and heterogeneous
healthcare datasets. Traditional tree-based boosting models such as XGBoost and Scikit-
learn’s implementation struggle with hyperparameter sensitivity and require extensive tuning
to achieve optimal performance. PaloBoost addresses these issues by supporting out-of-bag
sample regularization, which adjusts tree depths but also learning rates at each stage of
training. One of the innovations in PaloBoost is its gradient-aware pruning mechanism, which
prevents trees from growing unnecessarily complex by analyzing out-of-bag errors. If an
additional split in the tree does not reduce the error on out-of-bag samples, the node is pruned.
This prevents overfitting to the training data while maintaining strong generalization
performance. Additionally, PaloBoost introduces an adaptive learning rate that adjusts at each
stage based on out-of-bag samples, rather than relying on a fixed learning rate for all
iterations. This allows the model to start with larger learning rates for faster convergence and
gradually reduce them as training progresses, preventing excessive sensitivity to
hyperparameter choices. The effectiveness of PaloBoost was evaluated on five datasets,
including two synthetic datasets and three real-world healthcare datasets from Physionet 2012
and MIMIC-III. These datasets were chosen because they exhibit challenges typical in
healthcare data, for instance small sample sizes, missing measurements, and noisy labels. The
paper [13] introduces a new hyperparameter-free decision tree construction algorithm that
prevents overfitting by design but also maintain high precision. Unlike traditional decision
tree methods, which require extensive hyperparameter tuning or post-pruning to control
overfitting, the proposed algorithm eliminates these steps by supporting a stopping criterion
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rooted in Kolmogorov complexity and the minimum description length principle. The
algorithm, referred to as the minimum surfeit and inaccuracy method, constructs decision
trees through a breadth-first search approach. At each step, it evaluates whether adding a split
improves the model by comparing the inaccuracy and the surfeit (the complexity of the tree
relative to its information content). If adding a new split does not significantly reduce the cost
function, tree growth stops automatically. This approach ensures that the resulting decision
trees are compact, interpretable, and generalizable without the need for external tuning. The
effectiveness of the algorithm was tested using synthetic and real-world datasets. In synthetic
data experiments, the algorithm demonstrated robustness against noise and non-linearly
separable data distributions. For example, when applied to a dataset containing Gaussian
blobs with varying degrees of overlap, minimum surfeit and inaccuracy method achieved
comparable classification accuracy to traditional CART decision trees but generated models
that were significantly smaller and shallower. Unlike CART, which often produced trees with
unnecessary splits to account for noise, minimum surfeit and inaccuracy method stopped tree
growth when further splits failed to meaningfully reduce inaccuracy.

Despite these findings, challenges remain in identifying the most effective pruning and
validation techniques for specific datasets. Current research focuses on integrating
reinforcement learning and automated hyperparameter tuning to improve decision tree
performance dynamically. These findings collectively emphasize the importance of structured
hyperparameter tuning, regularization, pruning, and validation techniques in decision tree models.

The purpose of the paper. The aim of this paper is to develop a data-driven
framework for optimizing decision tree models by systematically balancing overfitting and
underfitting. This paper analyses how adjusting model complexity, specifically through the
max_leaf nodes parameter, can improve model performance and accuracy. The research uses
the Ames Housing dataset to demonstrate this approach, using MAE as an indicator used to
evaluate predictive performance. The goal is to identify an optimal model configuration that
minimizes prediction errors while ensuring the model has the good generalization to new data.
The framework presented in this paper is not only applicable to decision trees but may be
used to other machine learning models, providing a structured method for hyperparameter
tuning and model selection.

Presentation of the main material. A Decision Tree Regressor represents a machine
learning model used for predicting continuous target values. It works by the process of
splitting the data into small subsets that is based on feature values. Each split has been chosen
to minimize prediction errors. The internal nodes split the data based on conditions, and the
leaf nodes has the final predicted values. The splitting criterion for regression trees is usually
based on minimizing mean squared error (MSE). The MSE for a node is calculated as:

n

MSE = %'21 (yl, - Z)Z
i=

where y; represents actual values, y is the mean of the values in that node, and n is the

number of observations in the node. At each step, the algorithm selects the feature and split
point that leads to the lowest weighted sum of MSE in the child nodes:
Nie ft nright
MSEsplit = TMSEleft + n MSEright
where ne ¢ and ny; g, are the number of samples in the left and right child nodes. The depth

of the tree and the number of leaf nodes determine model complexity. A tree with too many
leaves may overfit the data, capturing noise instead of patterns. A shallow tree may underfit,
missing existing relationships in the data. To balance underfitting and overfitting, the model's

17



ISSN 2664-262X Central Ukrainian Scientific Bulletin. Technical Sciences. 2025. Issue 11(42), Part I

max_leaf nodes parameter is tuned. Fewer nodes simplify the model, while more nodes
increase complexity. The optimal number of leaf nodes is selected by evaluating MAE:

n A
st =

where J; is the predicted value. Decision Tree Regressor is designed to predict continuous
target values, such as home prices. The core objective of the code is evaluating the
performance of the model by analyzing the MAE across different levels of model complexity,
controlled by the max leaf nodes parameter. The model is trained on a training dataset
(train_X, train_y) and validated on a separate validation dataset (val X, val y). For each
specified number of max leaf nodes, the Decision Tree Regressor is fitted to the training
data, but also predictions are generated for the validation set. The MAE is then calculated to
measure the average absolute difference between the predicted and actual target values,
providing a clear metric of the model's accuracy. When the houses amongst the leaves are
divided, there are fewer houses in each leaf. The code iterates over a range of max leaf nodes
values, allowing for a systematic exploration of how model complexity impacts performance.
Fewer leaf nodes result in a simpler model, which may underfit the data, while more leaf
nodes increase complexity, potentially leading to overfitting. By comparing the MAE across
different configurations, the optimal number of leaf nodes can be identified, striking a balance
between overfitting and underfitting. This approach ensures that the model has good
generalization to unseen data while maintaining predictive accuracy. In essence, the proposed
method provides iterative tuning of the Decision Tree Regressor to find the best trade-off
between simplicity and complexity, ultimately minimizing prediction error.

A split is usually determined by selecting the feature X; and threshold ¢ that minimize

the weighted sum of MSE in the left (L) and right (R) child nodes [10-12]:

IL| IR|
——— MSE —— —MSE
g arg <|L| T R TA T Rl

where: L = {i|XL-J- < t} — left subset of data; R = {i|Xi,]- > t} — right subset of data; MSE;
and MSEy are the mean squared errors for the left and right nodes.

The depth of the decision tree (D) determines the complexity of the model. A deeper
tree increases the risk of overfitting, while a shallow tree may underfit the data. An
approximation for the tree depth can be represented as:

D =~ (N)
where N is the number of training samples. This equation explains that as the dataset size
grows, the tree can become deeper, increasing model flexibility but also the risk of
overfitting. In order to prevent excessive complexity, a regularization parameter A that

penalizes deeper trees is introduced:
T

L= Y MSE + AT

tree =1

where: L., represents the total loss function of the tree; MSE; is the Mean Squared Error for
a specific node t; T is the number of terminal (leaf) nodes; A is the regularization parameter
controlling tree complexity.

In some cases, alternative splitting criteria can be used, such as Huber loss, which
combines MSE and MAE for robust regression:

1 1
Ls(a) ={§a2, forlal <& 6<|a| —56),f0r|a| > 6
where a = y; — ¥ and § is a threshold determining when to switch between MSE and MAE.
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Decision trees present a bias-variance tradeoff, which can be analyzed by using the

expected prediction error:
2
E [(y - f(X)) ] = Bias? + Variance + o>

where: Bias measures how much the model assumptions deviate from the true function;
Variance measures sensitivity to variations in training data; 2 is the irreducible error due to
noise in the data.

To optimize decision tree performance, pruning techniques like pre-pruning (setting
max depth) and post-pruning (removing unnecessary branches) help reduce overfitting.
Since single decision trees are prone to overfitting, ensemble learning techniques such as
Random Forests and Gradient Boosting combine trees to improve generalization. These
methods use Bagging that averaging predictions from multiple trees trained on random samples:

A

f&) =5 L 1,0

where B is the number of trees in the ensemble.

But also boosting is used, that sequentially refining trees by assigning higher weights
to misclassified samples. These improve stability and reduce overfitting compared to
standalone decision trees.

Standard deviation (o) quantifies the dispersion or spread of a dataset relative to its
mean. In decision tree models, standard deviation analyzes the variability of prediction errors
and assess whether the model is consistently performing across different data splits. A high
standard deviation in model errors suggests instability, which may indicate overfitting (the
model is too complex) or underfitting (the model is too simple). The standard deviation is
mathematically defined as [14]:

0=+ (5,- ;)2

where: x; represents each individual value in the dataset; x is the mean of the dataset; n - the
total number of observations.

For a decision tree regression model, the standard deviation of prediction errors can be
computed to analyze model stability:

l n A 2
=A/7Z (;vi—yl.)
i=1

where y; is the actual value and ¥; is the predicted value. A lower standard deviation indicates
that prediction errors are consistent across different subsets of data, meaning the model
generalizes well. Standard deviation is also used in pruning decision trees. If the standard
deviation of errors in leaf nodes is high, it may indicate that the split does not improve model
performance significantly. In such cases, the tree can be pruned to avoid capturing noise.

Variance (62) measures the spread of data points around the mean and quantifies how
much predictions fluctuate. Variance helps distinguish between high variance models (prone
to overfitting) and low variance models (prone to underfitting). Variance is given by [15]:

2 14 -\
o = T_E (x[, - x)
i=1
where: x; - an individual observation; x - the mean; n - number of observations.
For a decision tree model, variance is calculated for the prediction errors:

2 1 " "2
=X (yi—yi)
i=1

error

error
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where y; and J; represent actual and predicted values, respectively. A high variance model
fits the training data well but fails to generalize unseen data, while a low variance model lacks
flexibility and underfits.

The Interquartile Range (IQR) measures data dispersion that focuses on the middle
50% of values. In decision tree regression models, IQR helps evaluate error distribution and
detect outliers. If the IQR is large, it suggests that prediction errors vary significantly among
different data points, which may indicate overfitting. IQR is computed as [16]:

IQR = Q3 — Q4
where: Q; (first quartile) is the 25th percentile (lower quartile); Q5 (third quartile) is the 75th
percentile (upper quartile).
For a decision tree, IQR of prediction errors is used to measure performance:
IQRerror = Q3(vi — 91) — Q1 (yi — 9)

A low IQR suggests that the model’s errors are consistent, while a high IQR implies
high variability in predictions, often indicating outliers or overfitting. IQR is also used in
pruning decision trees. If the IQR of errors in a node is large, it may indicate that the split
introduces instability rather than improving accuracy.

A Confidence Interval (CI) represents the range within which the true mean of a
dataset is expected to lie, with a given probability. In decision tree models, the 95% confidence
interval provides an estimate of prediction uncertainty. The formula for the 95% confidence interval
s [17]:

Cl=x+Za—
where: x -sample mean; Z« -value from the standard normal distribution (for 95% confidence,
2

Z =1.96), for decision tree regression models, the confidence interval for MAE can be
calculated as:

o,

Clyar = MAE + 1.96 x ‘i;%’r
A wider CI indicates greater uncertainty in model predictions, while a narrower CI suggests a
more stable model. If the CI for prediction errors is too wide, the model may be unstable.

Dean De Cock put together the Ames Housing dataset for use in data science
courses [18]. With an aim of forecasting the eventual sale price of every property, the dataset
consists of 79 explanatory variables covering almost every feature of Ames, lowa, residential
dwellings.

It includes a wide range of features, such as structural attributes (e.g., building class,
roof style, foundation type), spatial characteristics (e.g., lot size, neighborhood, proximity to
roads), and quality metrics (e.g., overall material quality, exterior condition, kitchen quality).
Additionally, it captures details about basements, garages, porches, and other amenities, as
well as temporal information like the year built, remodel date, and sale date. The dataset is
rich in detail, offering insights into both quantitative and qualitative (e.g., quality ratings,
material types) factors that influence home prices. This comprehensive set of variables
provides a foundation for modeling and analyzing the complex relationships between home
features and their market values. Actually, it's not unusual for a tree to have ten breaks
separating a leaf from the top level (all dwellings). The dataset splits up into leaves with less
dwellings as the tree descends. Should a tree have one split, the data is separated in two
groups. Should each group separate once more, we would have four residences divided
among them. Once again splitting each of those would produce eight groupings. By adding
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more divides at each level, if we maintain doubling the number of groups, we will have
houses by the tenth level. That amounts to 1024 leaves.

The provided code shows the process of training but also evaluation a Decision Tree
Regressor model to predict house prices using the Melbourne housing dataset. The dataset is
first loaded and cleaned by removing rows with missing values. The target variable y is set as
the house price (Price), while the features X include attributes such as the number of rooms,
bathrooms, land size, building area, year built, latitude, and longitude. The data is then split
into training and validation sets using an 80-20 split.

The model is iteratively trained and evaluated for different values of max_leaf nodes,
which controls the complexity of the Decision Tree. The MAE is calculated for each
configuration to assess model performance (Table 1). The results show that as the number of
leaf nodes increases, the MAE decreases, showing improved model accuracy. However,
beyond a certain point (around 400 leaf nodes), the MAE begins to stabilize or slightly
increase, suggesting that further complexity does not yield significant gains and may lead to
overfitting.

Table 1 — MAE for different max leaf nodes in the decision tree regressor

5| 2| 5 | 10| 25| 50 | 100|200 | 300|400 | 500 |1000 |2000 | 3000 | 4000 | 5000
z
0 j=3 v < — < o~ \O \O wv 0 o~ [o)} [N v
g1 2| 2|2 = |12 || Q|8 |F | ol |@a|n
o Lo o~ — oo o0 S <t N o [ on Al Vel Nal
on < — o~ el < el < < < < el el V) Ue)
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Source: developed by the authors

The optimal number of leaf nodes appears to be around 400, where the MAE reaches
its lowest value of 242,906. Beyond this point, the MAE fluctuates slightly but does not
improve substantially, indicating a balance between model complexity and generalization
(Fig.1). This analysis highlights the importance of tuning hyperparameters like
max_leaf nodes to achieve the best trade-off between underfitting and overfitting, ensuring
the model performs well on unseen data.

Dependence of MAE on Max Leaf Nodes in Decision Tree Regressor

> —8— MAE vs Max Leaf Nodes
425000 @ Optimal Point: 400 leaf nodes

400000 -
375000 4
350000 1 &
325000 4
300000 4
275000 1 p
250000 A k\'.”_//f * o *
l.] 10‘00 20’00 BO.UD 4050 50‘00
Max Leaf Nodes

Mean Absolute Error (MAE)

Figure 1 — Dependence of MAE on max leaf nodes in the decision tree regressor

Source: developed by the authors

21



ISSN 2664-262X Central Ukrainian Scientific Bulletin. Technical Sciences. 2025. Issue 11(42), Part I

Fig.1 shows the relationship between the number of max_leaf nodes in the Decision
Tree Regressor and the corresponding MAE. As the number of leaf nodes increases, the MAE
decreases, showing improved model performance due to increased complexity and better
capture of patterns in the training data. The MAE reaches its minimum value of 242,906 at
400 leaf nodes, which represents the optimal balance between model complexity and
generalization. Beyond this point, the MAE stabilizes or slightly increases, suggesting that
further complexity does not yield significant improvements and may lead to overfitting. The
red dot highlights the optimal point, emphasizing the importance of selecting an appropriate
number of leaf nodes to achieve the best possible predictive accuracy while avoiding overfitting.

To identify optimal tradeoff between bias and variance in the model and ensure that
the model performs good generalization, common descriptive statistical approaches are
utilized and the computed results presented in Table 2. The first exploited metric is the mean
MAE value which presents a baseline expectation of prediction quality. The value of
275084.27 signalize that the predictions deviate significantly from the actual values. Then,
standard deviation and variance values are used because they are useful in indicating the error
consistency: high values can suggest the existence of fluctuations because of underfitting or
overfitting. These two values from Table 2 highlight significant fluctuations in prediction
errors across different configurations of the model, suggesting that many of them suffer from
either overfitting or underfitting. The next metric is the IQR which captures the spread of the
middle 50% of errors, presenting if some configuration generates stable results. The value of
16,551.50 shows that the central 50% of MAE values are relatively close to each other,
indicating that most models perform within a narrow range. The final examined metric is the
95% confidence interval (CI) which is useful in estimating a range where the mean MAE will
be placed. The calculated 95% confidence interval from Table 2 implies that the true mean
MAE will probably fall within this range, providing a reliability measure. In summary, the
described results showcase that numerous configurations of the model include excessive
variability of errors, while some of them (presented in Table 1 and Fig. 1) provide stable
performance. Such results confirm the requirement for proposing and using data-driven approaches
for tuning models and finding an optimal balance between underfitting and overfitting.

Table 2 — Descriptive statistical approaches

Metric Value
Mean MAE 275084.27
Standard Deviation 52835.34
Variance 2791573039.64
IQR 16551.50
95% Confidence Interval 245825.03 - 304343.50

Source: developed by the authors

Concerning MAE variability, its nature is presented in a graphical manner in Fig. 2.
Here, a pattern tendency of the trade-off between underfitting and overfitting is visible, where
after the established 300 leaf nodes boundary, the model starts with overfitting and losing its
generalizability. In addition, at higher than 500 leaf nodes, the model becomes more sensitive
to smaller and smaller data variations, leading to greater error variances. Once again, it is
shown that 400 leaf nodes provide an optimal structure of the model which can provide the
desirable balance between generalization and flexibility, minimizing underfitting and
overfitting.

Another perspective of verifying the max leaf nodes configurations is the analysis of
the variance (evaluated standard deviations) across all setups of the model (Table 3). The
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variance increases at the beginning while the model becomes more complex. On the contrary,
when the model becomes flexible enough, its sensitivity increases and overfitting is observed.

425000 -

400000

375000 -

350000

325000 -

Mean Absolute Error (MAE)

300000 -

275000

250000 1

A a9 o 0®

Source: developed by the authors

R &

Max Leaf Nodes

Figure 2 — The graphical analysis of MAE variability

Table 3 — Variation of standard deviations regarding the number of leaf nodes

Max Leaf Nodes Std Dev (Variance)
2 14313.66
5 24207.20
10 20535.08
25 20264.85
50 22889.79

100 18722.85
200 25298.06
300 28828.46
400 29852.12
500 30916.83
1000 33537.63
2000 33985.66
3000 33572.64
4000 33366.93
5000 33365.37

Source: developed by the authors

The results in Table 3 and Fig. 3 provide numerical and graphical details for
understanding how different configurations of the model affect stability and performance. To
summarize, the reports suggest between 50 and 100 leaf nodes for providing stability
preferences and usable model performances. This is a slightly different conclusion from
previous evaluations that 400 leaves is the optimal number for this model, but both views are
coherent that the model should use less than 500 nodes. The difference in numbers is
something that is often observed in machine learning, where solutions are not unambiguous
and unique, and in most cases it is necessary to seek a compromise and balance between
different evaluation metrics when choosing the model structure.
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Figure 3 — Biac-Variance Tradeoff
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Source: developed by the authors

Conclusion. In this paper, 5 research tasks outlined in the problem statement were
addressed: (1) The relationship between max leaf nodes and model complexity was
analyzed, showing that lower values lead to underfitting while excessively high values cause
overfitting. (2) The model accuracy was evaluated using MAE across different
max_leaf nodes values, finding that performance improves as max_leaf nodes increases, but
stabilizes beyond 400 nodes. (3) The optimal max_leaf nodes value at 400 was 1dent1ﬁed
where MAE is minimized (242,906), guaranteemg a balance between accuracy and
generalization. (4) The cross-validation, pruning, and depth constraints were examined,
confirming that these techniques contribute to improved generalization while mitigating
overfitting. (5) A structured hyperparameter tuning framework for decision tree models was
proposed, which can be adapted to other machine learning techniques such as Random
Forests, neural networks, and ensemble methods.

In machine learning especially, the process of discovering the ideal balance between
underfitting and overfitting is really crucial. Underfit models perform badly on both training
and validation data and miss significant trends. An overfitted model learns noise from the
training data, therefore reducing generalization. Both issues result in inaccurate predictions
and reduced model reliability. This paper presents a framework for optimizing decision tree
models. The approach systematically tunes the max leaf nodes parameter and evaluates
model performance using MAE. The results show that increasing the number of leaf nodes
initially improves accuracy. However, beyond an optimal point, additional complexity does
not yield significant benefits and may lead to overfitting. The framework enables precise
model selection, to provide strong generalization while minimizing errors.

Further analysis was conducted to refine model evaluation by using descriptive
statistical measures, including standard deviation, variance, IQR, and the 95% CI. The results
confirmed that models with a very low or very high number of leaf nodes show prediction
inconsistencies, as indicated by high variance and standard deviation values. The IQR
analysis showed that models with optimal configurations had lower error dispersion, meaning
more stable predictions. The 95% CI confirmed that the mean MAE falls within a predictable
range. The analysis proposes that decision trees should ideally use between 50 and 400 leaf
nodes for balanced performance and stability, depending on the dataset.

The proposed method could be applied to other machine-learning models. MAE
represents a metric for tracking model performance across different configurations. For
instance, in a Random Forest model, the estimator number can be adjusted in a similar
manner to max_leaf nodes in decision trees. The optimal number of trees is calculated by
monitoring MAE across different settings. In neural networks, the number of hidden layers or
neurons per layer can be tuned using the same iterative approach. The findings highlight the
importance of structured hyperparameter tuning. The framework ensures that models achieve
optimal predictive performance without excessive complexity. The methodology provides a
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reliable approach to balancing model accuracy and generalization across different machine-
learning models.
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M. M. 31006in, B. M. Ba3uneBu4, 1011., KaHA. €KOH. HAYK
HY «Yepnicigcvka nonimexuixa», Yepuicie, Yxpaina

Iixxin Ha ocHOBI JaHUX 115 30a71aHCYBAHHS NePeHABYAHHS TA HEJJOHABYAHHS

B MOJIeJIsSIX /iepeBa pillleHb

CraTTs pucBsYeHA PO3POOII MiAX0y Ha OCHOBI JaHWX JUIs OalaHCyBaHHsS HaaMipHOI (overfitting) Ta
HelocTaTHbol npuctocoBanocti (underfitting) B Mojessix nepeB pimenb. HagmipHa nmpucTOCOBaHICTh 3a3BUUAi
BUHMKAE, KOJIM MOJICNIb BIIOBJIOE IIyM, 3MEHIIYIOUHM Yy3arajJbHEHHs, TOAI SK HEIOCTAaTHsS IPHUCTOCOBAHICThH
IPU3BOMUTH 10 HU3BKOI TOYHOCTI IIPOTHO3YBAaHHA. Y JOCITIPKEHHI CHCTEMaTHYHO HAJIAIITOBYBABCS Mapamerp
max_leaf nodes Ta oniHroBanack ehEKTUBHICTH MOIEII 3a JIOIOMOT0I0 cepeHbol abcomoTHOI nomuiku (MAE).
Merta monsrana B TOMy, 000 3HANTH ONTUMANBHUK OanaHC, sSKUil 3a0e3medye TOYHICTh MOJENI, 3amo0iraloyn
IpY LbOMY il HaZAMIpHIN CKJIATHOCTI.

Perpecop nepesa pimiens (A Decision Tree Regressor) HapuaBcs Ha Habopi gannx Ames Housing, skuit
BKIIFOYa€ 79 MOSCHIOBAIBHUX 3MIHHHX, MOB'S3aHUX 3 I[IHAMH Ha XUTiI0. Habip manux Oyio po3auicHO Ha
HaBYAJIBHUN Ta BaligamiiHUN HaOOpH (TOOTO Ha HAOOPH IS HaBYaHHA Ta MepeBipku). Momens OLiHIOBaIacs
HIISIXOM iTepauil Hax pisHuMU 3HadeHHsMH max leaf nodes, Big 2 mo 5000, i obuucnennss MAE nist koxHOT
KoH(piryparii. Pe3ynpratin mokaszanu, mo 30imsmeHHs max_leaf nodes crmoyaTKy MOKpamiyBajio TOYHICTB, aie
micist 400 By3niB MAE crabinisyBanocst Ha piBHi 242,906, Mo CBIAYMIIO TIPO Te, IO MOJAJIbIIE YCKIAIHEHHS He
MOKPAIIyBaJIO MPOAYKTUBHICTh. Y CTATTi MiAKPECIEHO, IO MOETI 3 HAJATO MAaJO0 KUTBKICTIO JINCTKOBHUX BY3IIiB
HE BIJIOBIJAIOTh JaHUM, TOAI SK MOJEIl 3 HAATO BEJIUKOIO KUIBbKICTIO JIMCTKOBHX BY3JIB - HaJMIipHO
MPHUCTOCOBYIOTHCS, 3aXOIUTIOIOYH ITOMHJIKOBI maTepHU. [l mom'skimieHHS 1€l mpoOieMH BHKOPHCTaHO
cUCTeMaTH4YHe HaJAIUTYBaHHS TilepriapaMerpiB IUisl MOUIYKY ONTUMalbHOI KoHGirypauii. Takox pocinimkeHo
BIUIMB TIEPEXPECHOi IEpeBipKH, CKOPOYCHHS Ta OOMEKeHb Ha TIIHOMHY AepeBa Ha y3arajJbHEHHS MOJEIIL.
BucHoBKkM  cBiguaTh, 110 BHOIp BigmoBigHOro 3HadeHHs max leaf nodes 3anobirae HagMipHOMY
MPUCTOCYBaHHIO, 30€pirarouy Mpy 1IbOMY CHIIBHY IPOTHOCTHYHY CHITY.

VY crarTi MoKa3aHO BaXKIHMBICTH CTPYKTYPOBAHOTO HAJIAIITYBAaHHS TileprnapaMeTpiB y MOJENAX AepeBa
pimwens. OnrumansHe 3Ha4eHHs max_leaf nodes 3Haxomuthest Ha piBHI 400. @peiiMBOpK MOKHA aanTyBaTH 10
IHINMX MoJeieil MallMHHOTO HapyaHHA, ¢ MAE MO)XHa BHKOPHUCTOBYBATH IUISl OLIHKH IPOJXYKTHBHOCTI HPH
pi3HUX HaJamTyBaHHSX mapamerpiB. Hampukinan, y mozensx umankoBoro Jjicy (Random Forest) kinmbkicts
JIEpeB MOXHA ONITUMI3yBaTH aHAJIOTiYHO.

PesynbpraTi MiIKpeCTIOOTH, IO HAJAIITYBaHHS CKJIAJHOCTI MOJENI Ma€ BaXIIMBE 3HAYCHHS JUIs
JOCATHEHHS TOYHHMX IPOTHO3IB, YHHUKAIOYH NPU LbOMY HaJMIPHOTO IPUCTOCYBAaHHA. Y MOJANBIIMX podoTax
CIiJl JOCTITUTH IHTErpaIlif0 AJITOPUTMIB aBTOMATH30BAHOTO HANANITYBAHHS Ta aHCAMOJCBHX METOMIB IS
MOKpAIIEeHHS MPOAYKTUBHOCTI IEPEB PIllICHb.
perpecop JepeBa pilleHb, HagMipHe NPHCTOCYBAHHS, INepPEeHABYAHHS, HEMAOCTATHE NPHCTOCYBAHHS,
HeJOHABYAHHSA, ONTUMI3allifg Mo/ei, rinepnapaMeTpuyHe HAJIAIITYBAHHS
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