DOI: https://doi.org/10.32515/2664-262X.2025.12(43).2.117-122

Assessment of The Stability of the Axial Positioning of the End Face of a Long Cylindrical Workpiece During Automatic Feeding in a Machine Tool

Dmytro Yaniuk

About the Authors

Dmytro Yaniuk, PhD Student in Applied Mechanics and Mechatronics, Lutsk National Technical University, Lutsk, Ukraine, ORCID: https://orcid.org/0009-0002-9633-0620, e-mail: yanyuk_10719366@lutsk-ntu.com.ua.

Abstract

The aim of the work is to develop a unified methodology for assessing the accuracy of the axial position of the end face after automatic feeding on lathes, which allows for the correct calculation of the probability of falling within the tolerance window based on process data. It also makes it possible to agree on key metrics (μ, σ, Pok, Cpk) and rules for their application, and to determine acceptance thresholds for technological solutions. The paper formulates a production problem for mass processing. Four scenarios for the result of feeding are proposed: without undercutting; with a small allowance; with a large allowance; underfeeding (critical defect). The value Δ is introduced as the deviation from the plane Z=0 and T as half of the bilateral tolerance. A parametric assessment of the axial position accuracy of the bar blank end face is given, and the positioning process capability index Cpk = (T−|μ|)/(3σ) and its interpretation are specified. Cpk thresholds (1.00; 1.33; 1.67; ≥2.00) and their relationship to defectiveness are established for quick decision-making. The methodology provides a metrologically correct and reproducible assessment of the axial position of the end face after automatic feeding, suitable for daily operation. This contributes to the achievement of a targeted reduction in displacement and scatter (μ, σ), which reduces the need for trimming and the associated material and energy costs. The result is a methodology that provides a reproducible assessment of the axial position of the end face after automatic feeding. Controlled reduction of μ and σ reduces the need for undercutting and resource costs. The Cpk thresholds allow comparing bar feeding machines and making decisions on the feasibility of certain engineering actions. In general, the results obtained make it possible to implement automatic process control measures and further expansion.

Keywords

cutting machining, position accuracy model, machining strategy, machining parameters, machining optimization, machine subsystems, spindle unit clamping

Full Text:

PDF

References

1. Kumari, S., et al. (2023). Contactless measurement of error in lathe tool positioning. 2023 3rd International Conference on Intelligent Technologies (CONIT), Hubli, India, June 23–25, 2023. https://doi.org/10.1109/CONIT59222.2023.10205386.

2. Yang, J., et al. (2022). Modeling and testing analysis of prepositioning accuracy of CNC turret. 2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), Ma'anshan, China, November 18–20, 2022. https://doi.org/10.1109/WCMEIM56910.2022.10021535.

3. Turaeva, U., et al. (2025). Investigation of cutting tool and workpiece positioning precision as a critical factor in enhancing machining accuracy. E3S Web of Conferences, 627, 04002. https://doi.org/10.1051/e3sconf/202562704002.

4. Leshchenko, O. (2025). Methods for improving positioning accuracy of CNC machines based on system correction calculation. Nauka ta vyrobnytstvo, 29, 136–144. https://doi.org/10.31498/2522-9990-292025-330270. [in Ukrainian].

5. Chetverzhuk, T. I., et al. (2021). Statistical modelling of technical characteristics of metal-cutting machines.Naukovi notatky, 71, 322–329. https://doi.org/10.36910/6775.24153966.2021.71.47. [in Ukrainian].

6. Slapak, V., Pajkos, M., & Hric, M. (2019). The factors affecting positioning accuracy of geared servodrives. 2019 International Conference on Electrical Drives & Power Electronics (EDPE), The High Tatras, Slovakia, September 24–26, 2019. https://doi.org/10.1109/EDPE.2019.8883922.

7. Kaftan, P., et al. (2024). Thermal error measurement and compensation with torque limit skip in Swiss-type lathe manufacturing. Precision Engineering. https://doi.org/10.1016/j.precisioneng.2024.01.024.

8. Öztürk, T., Sarıkaya, E., & Weigold, M. (2021). Sensor-integrated tap holder for process uncertainty detection based on tool vibration and axial length compensation sensors. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-021-07825-6.

9. Ramesh, R., Mannan, M. A., & Poo, A. N. (2000). Error compensation in machine tools – a review. International Journal of Machine Tools and Manufacture, 40(9), 1257–1284. https://doi.org/10.1016/S0890-6955(00)00010-9.

10. Soriano-Heras, E., et al. (2021). Mathematical analysis of the process forces effect on collet chuck holders. Mathematics, 9(5), 492. Web site. URL: https://doi.org/10.3390/math9050492 (accessed 22.11.2025).

Citations

1. Contactless measurement of error in lathe tool positioning / S. Kumari та ін. 2023 3rd International Conference on Intelligent Technologies (CONIT), м. Hubli, India, 23–25 черв. 2023 р. 2023. URL: https://doi.org/10.1109/CONIT59222.2023.10205386.

2. Modeling and testing analysis of prepositioning accuracy of CNC turret / J. Yang та ін. 2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), м. Ma'anshan, China, 18–20 листоп. 2022 р. 2022. URL: https://doi.org/10.1109/WCMEIM56910.2022.10021535.

3. Investigation of cutting tool and workpiece positioning precision as a critical factor in enhancing machining accuracy / U. Turaeva та ін. E3S Web of Conferences. 2025. Т. 627. С. 04002. URL: https://doi.org/10.1051/e3sconf/202562704002.

4. Лещенко О. Методи підвищення точності позиціонування верстатів з ЧПК на основі розрахунку системних поправок. Наука та виробництво. 2025. № 29. С. 136–144. URL: doi.org/10.31498/2522-9990-292025-330270.

5. Статистичне моделювання технічних характеристик металорізальних верстатів / Т. І. Четвержук та ін. Наукові нотатки. 2021. № 71. С. 322–329. URL: https://doi.org/10.36910/6775.24153966.2021.71.47.

6. Slapak V., Pajkos M., Hric M. The factors affecting positioning accuracy of geared servodrives. 2019 International Conference on Electrical Drives & Power Electronics (EDPE), м. The High Tatras, Slovakia, 24–26 верес. 2019 р. 2019. URL: https://doi.org/10.1109/EDPE.2019.8883922.

7. Thermal error measurement and compensation with torque limit skip in Swiss-type lathe manufacturing / P. Kaftan та ін. Precision Engineering. 2024. URL: https://doi.org/10.1016/j.precisioneng.2024.01.024.

8. Öztürk T., Sarıkaya E., Weigold M. Sensor-integrated tap holder for process uncertainty detection based on tool vibration and axial length compensation sensors. The International Journal of Advanced Manufacturing Technology. 2021. URL: https://doi.org/10.1007/s00170-021-07825-6.

9. Ramesh R., Mannan M. A., Poo A. N. Error compensation in machine tools – a review. International Journal of Machine Tools and Manufacture. 2000. Т. 40, № 9. С. 1257–1284. URL: doi.org/10.1016/S0890-6955(00)00010-9.

10. Mathematical analysis of the process forces effect on collet chuck holders / E. Soriano-Heras та ін. Mathematics.2021. Т. 9, № 5. С. 492. URL: https://doi.org/10.3390/math9050492 (дата звернення: 22.11.2025).

Copyright (©) 2025, Dmytro Yaniuk