DOI: https://doi.org/10.32515/2664-262X.2025.12(43).2.175-187

Substitution of Technological and Constructive-Kinematic Parameters of a Flexible Screw Conveyor

Oleg Lyashuk, Viktor Gud, Andrii Dyachun, Sergii Pankiv

About the Authors

Oleg Lyashuk, Professor, Doctor of Science, Professor of the Automobile Department, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine, ORCID: https://orcid.org/0000-0003-4881-8568, e-mail: oleglashuk@ukr.net

Viktor Gud, Associate Professor, Doctor of Science, Professor of the Automobile Department, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine, ORCID: https://orcid.org/0000-0001-5312- 526X, e-mail: vic_g@ukr.net

Andrii Dyachun, Associate Professor, PhD, Department of Engineering of machine-building technologies, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine, ORCID: https://orcid.org/0000-0003-1354-9468, e-mail: dyachun_andriy@ukr.net

Sergii Pankiv, PhD Student in Industrial mechanical engineering, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine, e-mail: sergo_pan@ukr.net

Abstract

The article justifies the technological and calculated structural and kinematic parameters of a flexible screw conveyor (FSC) based on the condition of its structural strength. A new design of the FSC section with expanded technological capabilities is proposed, which ensures a reduction in the radius of curvature of the material transportation trajectory, as well as an increase in their efficiency compared to the known ones, a reduction in energy consumption and an increase in the lifting height of bulk materials transportation. The main attention is paid to the choice of the design option of the screw working body (SW), which will depend on the nature of the transport and technological process, which regulates the types of loads on the main structural element of the SWC - the screw, or on the design features of the spiral and the SWC casing.

Keywords

flexible screw conveyor, process, amplitude, productivity, power, power parameters, screw, bulk material, casing

Full Text:

PDF

References

1. Hevko, I. B., Leshchuk, R. Ya., Hud, V. Z., et al. (2019). Flexible screw conveyors: Design, manufacturing technology, experimental research (207 p.). Ternopil: FOP Palianytsia V. A. [in Ukrainian].

2. Hud, V. Z. (2021). Mechanical-technological principles of developing multifunctional sectional screws for grain material (Doctoral dissertation, 410 p.). Ternopil. [in Ukrainian].

3. Lyashuk, O. L., et al. (2018). Mathematical model of bending vibrations of a horizontal feeder-mixer along the grain mixture flow. INMATEH: Agricultural Engineering, 55(2), 35–45.

4. Hevko, R. B., et al. (2016). Investigation of a transfer branch of a flexible screw conveyor. INMATEH: Agricultural Engineering, 48(1), 29–34.

5. Lyashuk, O., et al. (2016). Study of a nonlinear model of dynamics of the “extruder–elastic auger working body” system. Acta Technologica Agriculturae, 4, 102–107.

6. Rohatynskyi, R. M. (1997). Mechanical-technological foundations of interaction between screw working bodies and agricultural raw material (Doctoral dissertation, 502 p.). Kyiv. [in Ukrainian].

7. Hevko, Iv. B., et al. (2016). Investigation of bending radius for flexible screw sectional conveyors. INMATEH: Agricultural Engineering, 48(1), 35–43.

8. Hevko, R. B., et al. (2018). Determination of transporting and mixing parameters of feed mixtures along curvilinear tubular conveyor paths. INMATEH: Agricultural Engineering, 55(2), 97–104.

9. Leshchuk, R. Ya. (2004). Substantiation of structural-force parameters of sectional screw working organs of overload mechanisms (PhD dissertation, 166 p.). Lviv. [in Ukrainian].

10. Roberts, A. W. (1999). Influence of granular vortex motion on volumetric performance of enclosed screw conveyors. Powder Technology, 104(1), 56–67.

11. Roberts, A. W. (2015). Bulk solids: Optimizing screw conveyors. Chemical Engineering, 122(2), 62–67.

12. Lutsiv, I. V., et al. (2017). Investigation of dynamic impact loads in screw conveyor drives with safety clutches. INMATEH: Agricultural Engineering, 51(1), 69–77.

13. Lyashuk, O., et al. (2019). Analysis of resonance oscillations of extruder elastic screw conveyors. International Journal of Engineering Research in Africa, 43, 49–58.

14. Rohatynskyi, R. M., et al. (2015). Research of torsional screw vibrations under impulsive force load. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 149(5), 64–68.

15. Hevko, B. M., et al. (2018). Improvement of machine safety devices. Acta Polytechnica. Journal of Advanced Engineering, 58(1), 17–25.

16. Hevko, R. B., et al. (2018). Development and substantiation of a pneumatic screw conveyor design. INMATEH: Agricultural Engineering, 54(1), 153–160.

17. Rachok, V. (2018). Influence of working bodies of different configurations on yeast dough kneading. Ukrainian Food Journal, 7(1), 119–134.

18. Li, H., & Liu, W. F. (2013). Experimental research of screw conveyor feeding system. New Trends in Mechanical Engineering and Materials. Applied Mechanics and Materials, 251, 101–103.

19. Roberts, W. (2015). Bulk solids: Optimizing screw conveyors. Chemical Engineering, 122(2), 62–67.

20. Sun, X. X., Meng, W. J., & Yuan, Y. (2017). Design method of a vertical screw conveyor based on Taylor– Couette–Poiseuille helical vortex stability. Advances in Mechanical Engineering, 9(7). doi.org/10.1177/1687814017714984.

21. Tian, Y., et al. (2018). Research on operating principles and energy consumption of a new flexible screw conveyor. Applied Sciences, 8(7). https://doi.org/10.3390/app8071038.

22. Lyashuk, O., Sokil, M., Vovk, Y., Tson, A., Gupka, A., Marunych, O. (2018). Torsional oscillations of a multifunctional auger conveyor screw considering continuous granular medium flow. Ukrainian Food Journal, 7(3), 499–510.

Citations

1. Гевко І. Б., Лещук Р. Я., Гудь В. З. та ін. Гнучкі гвинтові конвеєри: проєктування, технологія виготовлення, експериментальні дослідження. Тернопіль: ФОП Паляниця В. А., 2019. 207 с.

2. Гудь В. З. Механіко-технологічні основи розробки багатофункціональних секційних шнеків для зернового матеріалу : дис докт. техн. наук: 05.05.11. Тернопіль, 2021. 410 с.

3. Lyashuk O. L. et al. Mathematical model of bending vibrations of a horizontal feeder-mixer along the flow of grain mixture. INMATEH: Agricultural Engineering. 2018. 55(2). P. 35–45.

4. Hevko R. B. et al. Investigation of a transfer branch of a flexible screw conveyer. INMATEH: Agricultural Engineering. 2016. 48(1). P. 29–34.

5. Lyashuk O. et al. The study on nonlinear model of dynamics of a system “extruder elastic auger working body”. Acta Technologica Agriculturae. 2016. 4. P. 102–107.

6. Рогатинський Р. М. Механіко-технологічні основи взаємодії шнекових робочих органів з сировиною сільськогосподарського виробництва : дис. ... докт. техн. наук: 05.20.01, 05.05.05. Київ, 1997. 502 с.

7. Hevko Iv. B. et al. Investigation of the radius of bending for flexible screw sectional conveyers. INMATEH: Agricultural Engineering. 2016. 48(1). P. 35–43.

8. Hevko R. B. et al. Determination of the parameters of transporting and mixing feed mixtures along the curvilinear paths of tubular conveyors. INMATEH: Agricultural Engineering. 2018. 55(2). P. 97–104.

9. Лещук Р. Я. Обґрунтування конструктивно-силових параметрів секційних робочих органів гвинтових перевантажувальних механізмів : дис. ... канд. техн. наук: 05.02.02. Львів, 2004. 166 с.

10. Roberts A. W. The influence of granular vortex motion on the volumetric performance of enclosed screw conveyors. Powder Technology. 1999. 104(1). P. 56–67.

11. Roberts A. W. Bulk solids: Optimizing screw conveyors. Chemical Engineering. 2015. 122(2). P. 62–67.

12. Lutsiv I. V. et al. Investigation of dynamical impact loads in screw conveyer drives with safety clutches. INMATEH: Agricultural Engineering. 2017. 51(1). P. 69–77.

13. Lyashuk O. et al. Analysis of resonance oscillations of extruder elastic screw conveyor. International Journal of Engineering Research in Africa. 2019. 43. P. 49–58.

14. Rohatynskyi R. M. et al. The research of the torsional vibrations of the screw in terms of impulsive force impacts. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2015. 149(5). P. 64–68.

15. Hevko B. M. et al. Improvement of machine safety devices. Acta Polytechnica. Journal of Advanced Engineering. 2018. 58(1). P. 17–25.

16. Hevko R. B. et al. Development of a pneumatic screw conveyor design and substantiation of its parameters. INMATEH: Agricultural Engineering. 2018. 54(1). P. 153–160.

17. Rachok V. Influence of working elements of various configurations on the process of yeast dough kneading. Ukrainian Food Journal. 2018. 7(1). P. 119–134.

18. Li H., Liu W. F. The experimental research of screw conveyor feeding system. New Trends in Mechanical Engineering and Materials. Applied Mechanics and Materials. 2013. 251. P. 101–103.

19. Roberts W. Bulk solids: Optimizing screw conveyors. Chemical Engineering. 2015. 122(2). P. 62–67.

20. Sun X. X., Meng W. J., Yuan Y. Design method of a vertical screw conveyor based on Taylor–Couette–Poiseuille stable helical vortex. Advances in Mechanical Engineering. 2017. 9(7). DOI: 10.1177/1687814017714984.

21. Tian Y. et al. Research on the principle of a new flexible screw conveyor and its power consumption. Applied Sciences. 2018. 8(7). DOI: https://doi.org/10.3390/app8071038.

22. Lyashuk O., Sokil M., Vovk Y., Tson A., Gupka A., Marunych O. Torsional oscillations of an auger multifunctional conveyor's screw working body with consideration of the dynamics of a processed medium continuous flow. Ukrainian Food Journal. 2018. 7(3). P. 499–510.

Copyright (©) 2025, Oleg Lyashuk, Viktor Gud, Andrii Dyachun, Sergii Pankiv