DOI: https://doi.org/10.32515/2664-262X.2025.12(43).2.20-26
Method of Integral Analysis of Relationships between Information Sources based on Temporal-Semantic Metrics
About the Authors
Artem Kalancha, PhD Student, Department of Computer System Software, Yuriy Fedkovych Chernivtsi National University, Сernivtsi, Ukraine, ORCID: https://orcid.org/0009-0004-1451-7470, e-mail: kalancha.artem@chnu.edu.ua
Dmytro Uhryn, Professor, Doctor of Technical Sciences, Professor of the Department of Computer Science, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine, ORCID: https://orcid.org/0000-0003-4858-4511, e-mail: d.ugryn@chnu.edu.ua
Oleksandr Dorenskyi, Associate Professor, PhD in Information Technology (Candidate of Technical Sciences), Associate Professor of Cybersecurity and Software Department, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-7625-9022, e-mail: dorenskyiop@kntu.kr.ua
Vasyl Lytvyn, Doctor of Technical Sciences, Professor of the Department of Information Systems and Networks, Lviv Polytechnic National University, Lviv, Ukraine, ORCID: https://orcid.org/0000-0002- 9676-0180, e-mail: vasyl.v.lytvyn@lpnu.ua
Abstract
This study is devoted to the analysis of the relationships between information sources in the Ukrainian information space, in particular between news and political Telegram channels. The paper identifies the main shortcomings of existing analysis methods, which are mainly focused on the English-language context and do not take into account the dynamic nature of information sources. As an alternative to these methods, a new method of integral analysis is proposed, which combines several independent metrics at the same time - lexical similarity and temporal-semantic influence. The proposed and implemented approach allows us to assess not only the semantic similarity of sources, but also the nature of their interactions over time, forming a multidimensional matrix of relationships. The results obtained demonstrate the effectiveness of the integral approach for identifying hidden structures of information influence, which can be used for the further development of monitoring systems.
Keywords
Artificial Intelligence, NLP, Information Flows, Information Sources, Integrated Analysis, Network Structures, Temporal Semantic Influence
Method of Integral Analysis of Relationships between Information Sources based on Temporal-Semantic Metrics
About the Authors
Artem Kalancha, PhD Student, Department of Computer System Software, Yuriy Fedkovych Chernivtsi National University, Сernivtsi, Ukraine, ORCID: https://orcid.org/0009-0004-1451-7470, e-mail: kalancha.artem@chnu.edu.ua
Dmytro Uhryn, Professor, Doctor of Technical Sciences, Professor of the Department of Computer Science, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine, ORCID: https://orcid.org/0000-0003-4858-4511, e-mail: d.ugryn@chnu.edu.ua
Oleksandr Dorenskyi, Associate Professor, PhD in Information Technology (Candidate of Technical Sciences), Associate Professor of Cybersecurity and Software Department, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-7625-9022, e-mail: dorenskyiop@kntu.kr.ua
Vasyl Lytvyn, Doctor of Technical Sciences, Professor of the Department of Information Systems and Networks, Lviv Polytechnic National University, Lviv, Ukraine, ORCID: https://orcid.org/0000-0002- 9676-0180, e-mail: vasyl.v.lytvyn@lpnu.ua
Abstract
Keywords
Full Text:
PDFReferences
1. Ad Fontes Media. (2025). Interactive Media Bias Chart. URL: https://adfontesmedia.com/interactive-media-bias-chart/ (accessed: 02.09.2025).
2. AllSides. (2024). AllSides Media Bias Ratings. URL: https://www.allsides.com/ (accessed: 03.09.2025).
3. Ye, J., & Skiena, S. (2019). MediaRank: Computational ranking of online news sources. arXiv preprint, arXiv:1903.07581. https://doi.org/10.48550/arXiv.1903.07581.
4. Horne, B. D., Dron, W., Khedr, S., & Adali, S. (2018). Assessing the news landscape: A multi-module toolkit for evaluating the credibility of news. Companion Proceedings of The Web Conference 2018 (WWW’18), 235–238. https://doi.org/10.1145/3184558.3186987.
5. Cann, T. J. B., Dennes, B., Coan, T., O’Neill, S., & Williams, H. T. P. (2023). Using semantic similarity and text embedding to measure the social media echo of strategic communications. arXiv preprint, arXiv:2303.16694. https://doi.org/10.48550/arXiv.2303.16694.
6. Worrall, J., Browning, R., Wu, P., & Mengersen, K. (2022). Fifty years later: New directions in Hawkes processes. SORT, 46(1), 3–38. https://doi.org/10.2436/20.8080.02.116.
7. Bazeley, P. (2009). Integrating data analyses in mixed methods research. Journal of Mixed Methods Research, 3(3), 203–207. https://doi.org/10.1177/1558689809334443.
8. Telegram. (2025). Telegram APIs. URL: https://core.telegram.org/ (accessed: 01.09.2025).
9. Kalancha, A., & Uhryn, D. (2025). Optimizing text data storage for improved natural language processing: A comprehensive analysis. Advances in Computer Science for Engineering and Education VII (ICCSEEA 2024), 242, 294–303. https://doi.org/10.1007/978-3-031-84228-3_25.
10. Magara, B. M., Ojo, S. O., & Zuva, T. (2018). A comparative analysis of text similarity measures and algorithms in research paper recommender systems. Conference on Information Communications Technology and Society (ICTAS), 1–5. https://doi.org/10.1109/ICTAS.2018.8368766.
11. Uhryn, D., Kalancha, A., & Zakharov, M. (2025). Analysis of information sources based on the cosine similarity algorithm, affinity propagation and spectral clustering methods. Proceedings of the Tenth International Congress on Information and Communication Technology (ICICT 2025), 1416, 239–249. doi.org/10.1007/978-981-96-6441-2_21.
12. Dorenskyi, O. P., Ulichev, O. S., Zadorozhnyi, K. O., Kovalenko, A. S., & Drieieva, H. M. (2024). Conceptual model of information confrontation system of coordination center for national security and defense. Tsentralnoukrainskyi naukovyi visnyk. Tekhnichni nauky, 10(41) II, 23–31. https://doi.org/10.32515/2664-262X.2024.10(41).2.23-31 [in Ukrainian].
13. Korniienko, O., Kozub, N., & Dorenskyi, O. (2025). Method and technological solution of an AI-based adaptive investor survey service for risk profile identification. Central Ukrainian Scientific Bulletin. Technical Sciences, 11(42) II, 3–10. https://doi.org/10.32515/2664-262X.2025.11(42).1.3-10.
14. Shelekhov, I. V., Prylepa, D. V., Khibovska, Yu. O., Shamonin, K. Ye., & Dorenskyi, O. P. (2025).Information-extreme technology of intelligent quality analysis of educational content in universities. Tsentralnoukrainskyi naukovyi visnyk. Tekhnichni nauky, 12(43) I, 58–72. https://doi.org/10.32515/2664-262X.2025.12(43).1.58-72 [in Ukrainian].
Citations
1. Ad Fontes Media. Interactive Media Bias Chart. 2025. URL: https://adfontesmedia.com/interactive-media-bias-chart/ (дата звернення: 02.09.2025).
2. AllSides. AllSides Media Bias Ratings. 2024. URL: https://www.allsides.com/ (дата звернення: 03.09.2025).
3. Ye J., Skiena S. MediaRank: Computational ranking of online news sources. arXiv preprint. 2019. arXiv:1903.07581. DOI: https://doi.org/10.48550/arXiv.1903.07581.
4. Horne B. D., Dron W., Khedr S., Adalı S. Assessing the news landscape: A multi-module toolkit for evaluating the credibility of news. Companion Proceedings of The Web Conference 2018 (WWW’18). 2018. Р. 235–238. DOI: https://doi.org/10.1145/3184558.3186987.
5. Cann T. J. B., Dennes B., Coan T., O’Neill S., Williams H. T. P. Using semantic similarity and text embedding to measure the social media echo of strategic communications. arXiv preprint. 2023. arXiv:2303.16694. DOI: https://doi.org/10.48550/arXiv.2303.16694.
6. Worrall J., Browning R., Wu P., Mengersen K. Fifty years later: New directions in Hawkes processes. SORT. 2022. Vol. 46, № 1. Р. 3–38. DOI: https://doi.org/10.2436/20.8080.02.116.
7. Bazeley P. Integrating data analyses in mixed methods research. Journal of Mixed Methods Research. 2009. Vol. 3, № 3. Р. 203–207. DOI: https://doi.org/10.1177/1558689809334443.
8. Telegram. Telegram APIs. 2025. URL: https://core.telegram.org/ (дата звернення: 01.09.2025).
9. Kalancha A., Uhryn D. Optimizing text data storage for improved natural language processing: A comprehensive analysis. Advances in Computer Science for Engineering and Education VII (ICCSEEA 2024). Vol. 242. 2025. Р. 294–303. DOI: https://doi.org/10.1007/978-3-031-84228-3_25.
10. Magara B. M., Ojo S. O., Zuva T. A comparative analysis of text similarity measures and algorithms in research paper recommender systems. Conference on Information Communications Technology and Society (ICTAS). 2018. Р. 1–5. DOI: https://doi.org/10.1109/ICTAS.2018.8368766.
11. Uhryn D., Kalancha A., Zakharov M. Analysis of information sources based on the cosine similarity algorithm, affinity propagation and spectral clustering methods. Proceedings of the Tenth International Congress on Information and Communication Technology (ICICT 2025). Vol. 1416. 2025. Р. 239–249. DOI: https://doi.org/10.1007/978-981-96-6441-2_21.
12. Доренський О. П., Улічев О. С., Задорожний К. О., Коваленко А. С., Дрєєва Г. М. Концептуальна модель системи інформаційного протиборства координаційного центру з питань національної безпеки і оборони. Центральноукраїнський науковий вісник. Технічні науки. 2024. Вип. 10(41), ч. 2. С. 23–31. URL: https://doi.org/10.32515/2664-262X.2024.10(41).2.23-31.
13. Korniienko O., Kozub N., Dorenskyi O. Method and Technological Solution of an AI-Based Adaptive Investor Survey Service for Determining an Individual Risk Profile. Central Ukrainian Scientific Bulletin. Technical Sciences. 2025. Issue 11(42), Part II. Р. 3–10. DOI: https://doi.org/10.32515/2664-262X.2025.11(42).1.3-10.
14. Шелехов І. В., Прилепа Д. В., Хібовська Ю. О., Шамонін К. Є., Доренський О. П. Інформаційно-екстремальна технологія інтелектуального аналізу якості освітнього контенту в закладах вищої освіти. Центральноукраїнський науковий вісник. Технічні науки. 2025. Вип. 12(43), ч. 1. С. 58–72. DOI: https://doi.org/10.32515/2664-262X.2025.12(43).1.58-72.
Copyright (©) 2025, Artem Kalancha, Dmytro Uhryn, Oleksandr Dorenskyi, Vasyl Lytvyn