DOI: https://doi.org/10.32515/2664-262X.2025.12(43).2.87-101

Justification of Methods for Determining Mass and Aerodynamic (Hydrodynamic) Unbalances of a Propeller

Gennadiy Filimonikhin, Yulia Ostapchuk, Yulia Sokalska, Lubov Oliinichenko,Volodymyr Pirogov

About the Authors

Gennadiy Filimonikhin, Professor, Doctor of Technical Sciences, Head of the Department of Machine Parts and Applied Mechanics, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-2819-0569, e-mail: filimonikhin@ukr.net

Yulia Ostapchuk, PhD Student, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-7826-364X, e-mail: juli.biluk97@gmail.com

Yulia Sokalska, PhD Student, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0009-0008-4043-6251, e-mail: julija_8383@ukr.net

Lubov Oliinichenko, Associate Professor, PhD, Associate Professor of the Department of Machine Parts and Applied Mechanics, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0001-9351-6265, e-mail: loga_lubov@ukr.net

Volodymyr Pirogov, PhD, Associate Professor of the Department of Machine Parts and Applied Mechanics, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-5843-4552, e-mail: pirogovvv@ukr.net

Abstract

This paper theoretically substantiates new methods for determining the mass and aerodynamic (hydrodynamic) unbalance of a propeller, applicable to both air and water propellers with fixed pitch. It is proposed to determine the dynamic unbalance twice: first under normal operating conditions, and then under modified conditions in which only the aerodynamic (hydrodynamic) component changes. The proposed methods are based on: varying the density of air, gas, or liquid; applying reverse propeller rotation; and utilizing the ground effect. The aerodynamic (hydrodynamic) unbalance is quantified as a mass-equivalent unbalance, measured with a balancing instrument under defined operating conditions.

Keywords

propeller, balancing, unmanned vehicle, manned vehicle, balancing device, ground effect

Full Text:

PDF

References

1. Best, S. (1945). Propeller Balancing Problems. SAE Transactions, 53, 648–659. www.jstor.org/stable/44467824.

2. Majumder, P., & Maity, S. (2022). A critical review of different works on marine propellers over the last three decades. Ships and Offshore Structures, 18(3), 391–413. https://doi.org/10.1080/17445302.2022.2058767.

3. Li, L., Cao, S., Li, J., Nie, R., & Hou, L. (2021). Review of Rotor Balancing Methods. Machines, 9(5), 89. https://doi.org/10.3390/machines9050089.

4. DeSmidt, H. A. (2010). Automatic Balancing of Bladed-Disk/Shaft System via Passive Auto-balancer Devices. AIAA Journal, 48(2), 372–386. https://doi.org/10.2514/1.43832.

5. Filimonikhin, H. B., & Oliinychenko, L. S. (2015). Doslidzhennia mozhlyvosti zrivnovazhennia aerodynamichnoho dysbalansu krylchatky osiovoho ventyliatora korehuvanniam mas. Eastern-European Journal of Enterprise Technologies, 5(7(77)), 30–35. https://doi.org/10.15587/1729-4061.2015.51195 [in Ukrainian].

6. Filimonikhina, I., Nevdakha, Y., Olijnichenko, L., Pukalov, V., & Chornohlazova, H. (2019). Experimental study of the accuracy of balancing an axial fan by adjusting the masses and by passive auto-balancers. Eastern-European Journal of Enterprise Technologies, 6(1(102)), 60–69. https://doi.org/10.15587/1729-4061.2019.184546.

7. Niebsch, J., Ramlau, R., & Nguyen, T. (2010). Mass and Aerodynamic Unbalance Estimates of Wind Turbines. Energies, 3(4), 696–710. https://doi.org/10.3390/en3040696.

8. Bertelè, M., & Bottasso, C. L. (2022). Automatic detection and correction of aerodynamic and inertial rotor unbalances in wind turbine rotors. Journal of Physics: Conference Series, 2265. https://doi.org/10.1088/1742- 6596/2265/3/032100.

9. Sucameli, C. R., Bertelè, M., & Bottasso, C. L. (2024). Automatic detection and correction of aerodynamic unbalances: a noise-based approach. Journal of Physics: Conference Series, 2767. https://doi.org/10.1088/1742- 6596/2767/2/022022.

10. Milani, S., Leoni, J., Cacciola, S., Croce, A., & Tanelli, M. (2025). A machine-learning-based approach for active monitoring of blade pitch misalignment in wind turbines. Wind Energy Science, 10, 497–510. https://doi.org/10.5194/wes-10-497-2025.

11. Li, Z., & Gao, Y. (2024). Research on Wind Turbine Unbalance Fault Diagnosis Based on Wavelet Transform and Convolutional Neural Network. IEEE Access, 12, 176259–176269. https://doi.org/10.1109/ACCESS.2024.3496921.

12. International Organization for Standardization. (2015). Shipbuilding — Ship screw propellers — Manufacturing tolerances — Part 2: Propellers of diameter between 0.80 and 2.50 m inclusive (ISO 484-2:2015). https://www.iso.org/standard/63433.html.

13. Martin, E., Hartford, W., & Beebe, M. (1944). Means and methods of balancing propellers. US Patent 2343383A. IPC G01M1/22. https://patents.google.com/patent/US2343383A.

14. Kudashov, E., Bolotov, M., Grachev, I., & Pronichev, N. (2022). Methodology for assessing the aerodynamic unbalance of GTE impellers. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/1227/1/012004.

15. Faizin, M., Paryanto, P., Cahyo, N., & Rusnaldy, R. (2024). Investigating the accuracy of boat propeller blade components with reverse engineering approach using photogrammetry method. Results in Engineering, 22, 102293. https://doi.org/10.1016/j.rineng.2024.102293.

16. Olijnichenko, L., Filimonikhin, G., Nevdakha, A., & Pirogov, V. (2018). Patterns in change and balancing of aerodynamic unbalance of the low pressure axial fan impeller. Eastern-European Journal of Enterprise Technologies, 3(7(93)), 71–81. https://doi.org/10.15587/1729-4061.2018.133105.

17. Filimonikhin, G., Filimonikhina, I., Bilyk, Y., Krivoblotsky, L., & Machok, Y. (2021). Theoretical study into the aerodynamic unbalance of a propeller blade and the correcting masses this balance it. Eastern-European Journal of Enterprise Technologies, 4(7(112)), 60–66. https://doi.org/10.15587/1729-4061.2021.238289.

18. Sheets, J. H., & MacKinney, G. W. (1945). Reverse-Thrust Propellers as Landing Brakes. SAE Transactions, 257–263. https://www.jstor.org/stable/44467777.

19. Ma, Z., Wang, G., Luo, S., Luo, Q., & Zhao, Y. (2021). A Fast Landing Control Method for Full Wing Solar- powered UAV by Using Propeller Thrust Reversal. Chinese Control and Decision Conference (CCDC), 4938– 4943. https://doi.org/10.1109/CCDC52312.2021.9601493.

20. Bass, J., Tunney, I., & Desbiens, A. L. (2022). Adaptive Friction Shock Absorbers and Reverse Thrust for Fast Multirotor Landing on Inclined Surfaces. IEEE Robotics and Automation Letters, 7(3), 6701–6708. https://doi.org/10.1109/LRA.2022.3176102.

21. Yasukawa, H., Fujiwara, R., & Hirata, N. et al. (2022). Influence of initial disturbances on ship stopping performance by propeller reverse rotation. Journal of Marine Science and Technology, 27, 740–758. https://doi.org/10.1007/s00773-021-00866-2.

22. Garofano-Soldado, A., Sanchez-Cuevas, P. J., Heredia, G., & Ollero, A. (2022). Numerical-experimental evaluation of aerodynamic ground effect for small-scale tilted propellers at low Reynolds numbers. Aerospace Science and Technology, 126, 107625. https://doi.org/10.1016/j.ast.2022.107625.

23. Xiang He, & Kam K. Leang. (2025). Rotorcraft in-ground effect models in axial and forward flight. Aerospace Science and Technology, 156, 109748. https://doi.org/10.1016/j.ast.2024.109748.

24. Luo, Y., Ai, T., He, Y., Xu, B., Qian, Y., & Zhang, Y. (2023). Numerical investigation on unstable characteristics of ducted fans in ground effect. Chinese Journal of Aeronautics, 36(9), 79–95. https://doi.org/10.1016/j.cja.2023.04.004.

25. Kleeman, R. D. (2022). A Kinetic Theory of Gases and Liquids. USA: Creative Media Partners, LLC.

26. Chambers, A. (2004). Modern Vacuum Physics. Boca Raton: CRC Press LLC. 341 s.

27. Poling, B. E., Prausnitz, J. M., & O'Connell, J. P. (2001). Properties of Gases and Liquids (5th ed.). New York: McGraw-Hill Education. https://www.accessengineeringlibrary.com/content/book/9780070116825.

28. Sposib vyznachennia nezrivnovazhenostei povitrianoho hvynta: Patent №165212 Ukraina. MPK G01M 1/12, G01M 1/22 (2006.01). №u202500165; zaiavl. 14.01.2025; opubl. 16.10.2025, Biul. №41/2025 [in Ukrainian].

29. Sposib vyznachennia nezrivnovazhenostei povitrianoho hvynta: Patent №159842 Ukraina. MPK G01M1/12, G01M1/22 (2006.01). №u202500166; zaiavl. 14.01.2025; opubl. 09.07.2025, Biul. №28/2025 [in Ukrainian].

30. Sposib vyznachennia nezrivnovazhenostei povitrianoho hvynta: Patent №159843 Ukraina. MPK G01M 1/12, G01M 1/22 (2006.01). №u202500167; zaiavl. 14.01.2025; opubl. 09.07.2025, Biul. №28/2025 [in Ukrainian].

31. Sposib vyznachennia nezrivnovazhenostei povitrianoho hvynta: Patent №159914 Ukraina. MPK G01M 1/12, G01M 1/22 (2006.01). №u202500164; zaiavl. 14.01.2025; opubl. 16.07.2025, Biul. №29/2025 [in Ukrainian].

32. Sposib vyznachennia nezrivnovazhenostei povitrianoho hvynta: Patent №159841 Ukraina. MPK G01M 1/12, G01M 1/22 (2006.01). №u202500163; zaiavl. 14.01.2025; opubl. 09.07.2025, Biul. №28/2025 [in Ukrainian].

Citations

1. Best S. Propeller Balancing Problems. SAE Transactions. 1945. Vol. 53. P. 648–659. www.jstor.org/stable/44467824.

2. Majumder P., Maity S. A critical review of different works on marine propellers over the last three decades. Ships and Offshore Structures. 2022. 18(3). P. 391–413. https://doi.org/10.1080/17445302.2022.2058767.

3. Li L., Cao S., Li J., Nie R., Hou L. Review of Rotor Balancing Methods. Machines. 2021. 9(5):89. https://doi.org/10.3390/machines9050089.

4. DeSmidt H. A. Automatic Balancing of Bladed-Disk/Shaft System via Passive Auto-balancer Devices. AIAA Journal. 2010. 48(2). P. 372–386. https://doi.org/10.2514/1.43832.

5. Філімоніхін Г. Б., Олійніченко Л. С. Дослідження можливості зрівноваження аеродинамічного дисбалансу крильчатки осьового вентилятора корегуванням мас. Eastern-European Journal of Enterprise Technologies. 2015. 5(7(77)). C. 30–35. https://doi.org/10.15587/1729-4061.2015.51195.

6. Filimonikhina I., Nevdakha Y., Olijnichenko L., Pukalov V., Chornohlazova H. Experimental study of the accuracy of balancing an axial fan by adjusting the masses and by passive auto-balancers. Eastern-European Journal of Enterprise Technologies. 2019. 6(1(102)). P. 60–69. https://doi.org/10.15587/1729-4061.2019.184546.

7. Niebsch J., Ramlau R., Nguyen T. Mass and Aerodynamic Unbalance Estimates of Wind Turbines. Energies. 2010. 3(4). P. 696–710. https://doi.org/10.3390/en3040696.

8. Bertelè M., Bottasso C. L. Automatic detection and correction of aerodynamic and inertial rotor unbalances in wind turbine rotors. Journal of Physics: Conference Series. 2022. 2265. https://doi.org/10.1088/1742- 6596/2265/3/032100.

9. Sucameli C. R., Bertelè M., Bottasso C. L. Automatic detection and correction of aerodynamic unbalances: a noise-based approach. Journal of Physics: Conference Series. 2024. 2767. https://doi.org/10.1088/1742- 6596/2767/2/022022.

10. Milani S., Leoni J., Cacciola S., Croce A., Tanelli M. A machine-learning-based approach for active monitoring of blade pitch misalignment in wind turbines. Wind Energy Science. 2025. 10. P. 497–510. https://doi.org/10.5194/wes-10-497-2025.

11. Li Z., Gao Y. Research on Wind Turbine Unbalance Fault Diagnosis Based on Wavelet Transform and Convolutional Neural Network. IEEE Access. 2024. 12. P. 176259–176269. https://doi.org/10.1109/ACCESS.2024.3496921.

12. International Organization for Standardization. Shipbuilding — Ship screw propellers — Manufacturing tolerances — Part 2: Propellers of diameter between 0.80 and 2.50 m inclusive (ISO 484-2:2015). 2015. https://www.iso.org/standard/63433.html.

13. Martin E., Hartford W., Beebe M. Means and methods of balancing propellers. US Patent 2343383A. United States, 1944. IPC G01M1/22. Available: https://patents.google.com/patent/US2343383A.

14. Kudashov E., Bolotov M., Grachev I., Pronichev N. Methodology for assessing the aerodynamic unbalance of GTE impellers. IOP Conference Series: Materials Science and Engineering. 2022. https://doi.org/10.1088/1757- 899X/1227/1/012004.

15. Faizin M., Paryanto P., Cahyo N., Rusnaldy R. Investigating the accuracy of boat propeller blade components with reverse engineering approach using photogrammetry method. Results in Engineering. 2024. 22. 102293. https://doi.org/10.1016/j.rineng.2024.102293.

16. Olijnichenko L., Filimonikhin G., Nevdakha A., Pirogov V. Patterns in change and balancing of aerodynamic unbalance of the low pressure axial fan impeller. Eastern-European Journal of Enterprise Technologies. 2018. 3(7(93)). P. 71–81. https://doi.org/10.15587/1729-4061.2018.133105.

17. Filimonikhin G., Filimonikhina I., Bilyk Y., Krivoblotsky L., Machok Y. Theoretical study into the aerodynamic unbalance of a propeller blade and the correcting masses this balance it. Eastern-European Journal of Enterprise Technologies. 2021. 4(7(112)). P. 60–66. https://doi.org/10.15587/1729-4061.2021.238289.

18. Sheets J. H., MacKinney G. W. Reverse-Thrust Propellers as Landing Brakes. SAE Transactions. 1945. P. 257–263. https://www.jstor.org/stable/44467777.

19. Ma Z., Wang G., Luo S., Luo Q., Zhao Y. A Fast Landing Control Method for Full Wing Solar-powered UAV by Using Propeller Thrust Reversal. Chinese Control and Decision Conference (CCDC). 2021. P. 4938–4943. https://doi.org/10.1109/CCDC52312.2021.9601493.

20. Bass J., Tunney I., Desbiens A. L. Adaptive Friction Shock Absorbers and Reverse Thrust for Fast Multirotor Landing on Inclined Surfaces. IEEE Robotics and Automation Letters. 2022. 7(3). P. 6701–6708. https://doi.org/10.1109/LRA.2022.3176102.

21. Yasukawa H., Fujiwara R., Hirata N. et al. Influence of initial disturbances on ship stopping performance by propeller reverse rotation. Journal of Marine Science and Technology. 2022. 27. P. 740–758. https://doi.org/10.1007/s00773-021-00866-2.

22. Garofano-Soldado A., Sanchez-Cuevas P. J., Heredia G., Ollero A. Numerical-experimental evaluation of aerodynamic ground effect for small-scale tilted propellers at low Reynolds numbers. Aerospace Science and Technology. 2022. 126. 107625. https://doi.org/10.1016/j.ast.2022.107625.

23. Xiang He, Kam K. Leang. Rotorcraft in-ground effect models in axial and forward flight. Aerospace Science and Technology. 2025. 156. 109748. https://doi.org/10.1016/j.ast.2024.109748.

24. Luo Y., Ai T., He Y., Xu B., Qian Y., Zhang Y. Numerical investigation on unstable characteristics of ducted fans in ground effect. Chinese Journal of Aeronautics. 2023. 36(9). P. 79–95. https://doi.org/10.1016/j.cja.2023.04.004.

25. Kleeman R. D. A Kinetic Theory of Gases and Liquids. USA : Creative Media Partners, LLC, 2022. 288 с.

26. Chambers A. Modern Vacuum Physics. Boca Raton : CRC Press LLC, 2004. 341 с.

27. Poling B. E., Prausnitz J. M., O'Connell J. P. Properties of Gases and Liquids. 5th ed. New York : McGraw-Hill Education, 2001. https://www.accessengineeringlibrary.com/content/book/9780070116825.

28. Спосіб визначення незрівноваженостей повітряного гвинта : пат. 165212 Україна : МПК G01M 1/12, G01M 1/22 (2006.01). № u202500165 ; заявл. 14.01.2025 ; опубл. 16.10.2025. Бюл. № 41/2025.

29. Спосіб визначення незрівноваженостей повітряного гвинта : пат. 159842 Україна : МПК G01M1/12, G01M1/22 (2006.01). № u202500166 ; заявл. 14.01.2025 ; опубл. 09.07.2025. Бюл. № 28/2025.

30. Спосіб визначення незрівноваженостей повітряного гвинта : пат. 159843 Україна : МПК G01M 1/12, G01M 1/22 (2006.01). № u202500167 ; заявл. 14.01.2025 ; опубл. 09.07.2025. Бюл. № 28/2025.

31. Спосіб визначення незрівноваженостей повітряного гвинта : пат. 159914 Україна : МПК G01M 1/12, G01M 1/22 (2006.01). № u202500164 ; заявл. 14.01.2025 ; опубл. 16.07.2025. Бюл. № 29/2025.

32. Спосіб визначення незрівноваженостей повітряного гвинта : пат. 159841 Україна : МПК G01M 1/12, G01M 1/22 (2006.01). № u202500163 ; заявл. 14.01.2025 ; опубл. 09.07.2025. Бюл. № 28/2025.

Copyright (©) 2025, Gennadiy Filimonikhin, Yulia Ostapchuk, Yulia Sokalska, Lubov Oliinichenko,Volodymyr Pirogov