DOI: https://doi.org/10.32515/2664-262X.2025.12(43).2.154-164
Numerical Simulation of the «Sieve – Material Particles – Brush» System
About the Authors
Elchyn Aliiev, Doctor of Technical Sciences, Senior Researcher, Professor Department of Engineering of Technical Systems, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID: https://orcid.org/0000-0003-4006-8803, e-mail: aliev@meta.ua
Illia Lytvynov, PhD student in Industrial mechanical engineering, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID: https://orcid.org/0009-0001-7961-8086, e-mail: illalitvinov901@gmail.com.
Abstract
A comprehensive numerical simulation of the sieve cleaning process using a brush was carried out in Simcenter Star-CCM+, which allowed detailed reproduction of the spatial interaction between the elements of the
«sieve – material particles – brush» system and identification of the effects of design and kinematic parameters on cleaning efficiency. The application of the Discrete Element Method (DEM) combined with a Lagrangian multiphase approach provided an accurate representation of the contact interaction between flexible bristles, material particles, and the sieve walls, while the use of an unsteady implicit solver ensured stability and high accuracy of numerical integration.
Multifactor simulations determined the influence of four main parameters – brush inclination angle γ, relative particle size Kpo, number of bristles along the motion direction Nbx, and brush velocity Vb – on three key performance criteria: the fraction of particles passing through the sieve (εgi), remaining on the surface (εgu), and removed from it (εgd). The obtained second-order regression equations showed high adequacy according to Student’s and Fisher’s criteria, confirming the reliability of the numerical model.
It was established that increasing the brush velocity and decreasing its inclination angle enhance the cleaning process, while larger relative particle size increases the likelihood of particles remaining on the sieve. A nonlinear interaction between factors was revealed, indicating the existence of optimal combinations of geometric and kinematic parameters that maximize cleaning efficiency without damaging the bristles or the sieve surface.
Keywords
numerical simulation, DEM, brush, sieve, material particles, cleaning efficiency
Numerical Simulation of the «Sieve – Material Particles – Brush» System
About the Authors
Elchyn Aliiev, Doctor of Technical Sciences, Senior Researcher, Professor Department of Engineering of Technical Systems, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID: https://orcid.org/0000-0003-4006-8803, e-mail: aliev@meta.ua
Illia Lytvynov, PhD student in Industrial mechanical engineering, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID: https://orcid.org/0009-0001-7961-8086, e-mail: illalitvinov901@gmail.com.
Abstract
Keywords
Full Text:
PDFReferences
1. Katarzyna, L., Remigiusz, M., & Piotr, W. (2016). Mathematical and empirical description of screen blocking. Granular Matter, 18, Article 13. https://doi.org/10.1007/s10035-016-0622-4.
2. Feder, S., Keska, W., & Wlodarczyk, K. (2008). Pneumatic aiding of the process of screening granular mixtures using a screening table. Agric. Eng., 4(102), 263–270.
3. Vasylkovskyi, O. M., Leshchenko, S. M., Moroz, S. M., Nesterenko, O. V., & Molokost, L. A. (2020). Development toward the concept of the "ideal" sieve of a grain separator. Konstruiuvannia, vyrobnytstvo ta ekspluatatsiia silskohospodarskykh mashyn, 50, 52–58. doi.org/10.32515/2414-3820.2020.50.52-58 [in Ukrainian].
4. Olshansky, V. P., Bredykhin, V. V., Lukyanenko, V. M., Piven, M. V., Slipchenko, M. V., & Kharchenko, S.O. (2017). Theory of grain separation (Monograph, 802 p.). Kharkiv.
5. Olshanskyi, V. P., Slipchenko, M. V., Olshanskyi, O. V., & Bredykhin, V. V. (2022). Dynamics of pulse- loaded nonlinear oscillators (Monograph, 262 p.). Kharkiv.
6. Simcenter. (n.d.). Simcenter STAR-CCM+ 2210 released: What’s new? Retrieved from blogs.sw.siemens.com/simcenter/simcenter-star-ccm-2210-released-whats-new/?utm_source=chatgpt.com.
7. Qiu, Z., Xiao, Q., Yuan, H., Han, X., & Li, C. (2024). Particle shape and clogging in fluid-driven flow: A coupled CFD-DEM study. Powder Technology, 437, 119566. https://doi.org/10.1016/j.powtec.2024.119566.
8. Zhao, Z., Wu, M., & Jiang, X. (2024). A review of contact models’ properties for discrete element simulation in agricultural engineering. Agriculture, 14, 238. https://doi.org/10.3390/agriculture14020238.
9. Shevchenko, I., & Aliiev, E. (2018). Study of the process of calibration of confectionery sunflower seeds. Food Science and Technology, 12(4), 135–142. https://doi.org/10.15673/fst.v12i4.1209.
10. Shen, J., Wheeler, C., Ilic, D., & Chen, J. (2019). Application of open source FEM and DEM simulations for dynamic belt deflection modelling. Powder Technology, 357, 171–185. https://doi.org/10.1016/j.powtec.2019.08.068.
11. Li, J., Webb, C., Pandiella, S. S., & Campbell, G. M. (2003). Discrete particle motion on sieve – A numerical study using the DEM simulation. Powder Technol., 133, 190–203. doi.org/10.1016/S0032-5910(03)00092-5.
12. Bi, Y., Song, Q., Zhu, J., Feng, J., Dong, J., Zhao, P., Huang, Y., Fu, Z., & Zhou, J. (2024). Performance of elastic ball screen-cleaning device based on DEM-MBD coupling simulation. Particuology, 93, 247–263. https://doi.org/10.1016/j.partic.2024.07.003.
13. Aliiev, E. B. (2023). Chyselne modeliuvannia protsesiv ahropromyslovoho vyrobnytstva (340 p.). Kyiv: Ahrarna nauka. https://doi.org/10.31073/978-966-540-584-9 [in Ukrainian].
14. Boset, L. D., Wako, A., & Zewdie, B. (2023). Determination of terminal velocity of some agricultural grain using Ansys Rocky DEM–CFD coupling simulation. Science Development, 4(2), 28–35. https://doi.org/10.11648/j.scidev.20230402.12.
15. Devpalli, D., Mayavaram, R., Singh, N., & Wollschlager, J. (2024). Challenges in implementing fiber-fiber interaction in a discrete element method analysis of fiber orientation. SPE ANTEC 2024 Conference Proceedings, St. Louis.
Citations
1. Katarzyna L., Remigiusz M., Piotr W. Mathematical and empirical description of screen blocking. Granular Matter. 2016. Vol. 18. Article number 13. DOI: 10.1007/s10035-016-0622-4
2. Feder S., Keska W., Wlodarczyk K. Pneumatic aiding of the process of screening granular mixtures using a screening table. Agric. Eng. 2008. Vol. 4(102). P. 263–270.
3. Васильковський О.М., Лещенко С.М., Мороз С.М., Нестеренко О.В., Молокост Л.А. До створення концепції «ідеального» решета зернового сепаратора. Конструювання, виробництво та експлуатація сільськогосподарських машин. 2020. Вип. 50. С. 52–58. DOI: 10.32515/2414-3820.2020.50.52-58
4. Olshansky V.P., Bredykhin V.V., Lukyanenko V.M., Piven M.V., Slipchenko M.V., Kharchenko S.O. Theory of grain separation: monograph. Kharkiv. 2017. 802 p.
5. Olshanskyi V.P., Slipchenko M.V., Olshanskyi O.V., Bredykhin V.V. Dynamics of pulse-loaded nonlinear oscillators: monograph. Kharkiv. 2022. 262 p.
6. Simcenter. Simcenter STAR-CCM+ 2210 released: What’s new? [Electronic resource]. – Access mode: https://blogs.sw.siemens.com/simcenter/simcenter-star-ccm-2210-released-whats-new/?utm_source=chatgpt.com
7. Qiu Z., Xiao Q., Yuan H., Han X., Li C. Particle shape and clogging in fluid-driven flow: A coupled CFD- DEM study. Powder Technology. 2024. Vol. 437. 119566. DOI: 10.1016/j.powtec.2024.119566
8. Zhao Z., Wu M., Jiang X. A Review of Contact Models’ Properties for Discrete Element Simulation in Agricultural Engineering. Agriculture. 2024, Val. 14. 238. DOI: 10.3390/agriculture14020238
9. Shevchenko I., Aliiev E. Study of the process of calibration of confectionery sunflower seeds. Food Science and Technology. 2018. Vol. 12, Is. 4. P. 135–142. DOI: 10.15673/fst.v12i4.1209
10. Shen J., Wheeler C., Ilic D., Chen J. Application of open source FEM and DEM simulations for dynamic belt deflection modelling. Powder Technology. 2019. Vol. 357. P. 171–185. DOI: 10.1016/j.powtec.2019.08.068.
11. Li J., Webb C., Pandiella S.S., Campbell G.M. Discrete particle motion on sieve–a numerical study using the DEN simulation. Powder Technol. 2003. Val. 133. P. 190–203. DOI: 10.1016/S0032-5910(03)00092-5
12. Bi Y., Song Q., Zhu J., Feng J., Dong J., Zhao P., Huang Y., Fu Z., Zhou J. 2024. Performance of elastic ball screen-cleaning device based on DEM-MBD coupling simulation. Particuology. Vol. 93. P. 247–263. DOI: 10.1016/j.partic.2024.07.003
13. Алієв Е. Б. Чисельне моделювання процесів агропромислового виробництва: підручник. Київ: Аграрна наука. 2023. 340 с. DOI: 10.31073/978-966-540-584-9
14. Boset L. D., Wako A., Zewdie B. Determination of Terminal Velocity of Some Agricultural Grain Using Ansys Rocky DEM - CFD Coupling Simulation. Science Development. 2023. Vol. 4(2). P. 28–35. DOI: 10.11648/j.scidev.20230402.12
15. Devpalli D., Mayavaram R., Singh N., Wollschlager J. Challenges in implementing fiber-fiber interaction in a discrete element method analysis of fiber orientation. Conference: SPE ANTEC 2024At: St Louis.
Copyright (©) 2025, Elchyn Aliiev, Illia Lytvynov