DOI: https://doi.org/10.32515/2664-262X.2025.12(43).1.44-57
Game-Theoretic Approach to Microservice Optimization
About the Authors
Oleksandr Ulichev, PhD (Candidate of Technical Sciences), Senior Lecturer of Cybersecurity and Software Academic Department, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0003-3736-9613, e-mail: askin79@gmail.com
Victor Kulahin, PhD student in Computer Science, Private Higher Education Establishment "European University", Kyiv, Ukraine, ORCID: https://orcid.org/0009-0004-1334-2277, e-mail: victor@kulagin.com.ua
Abstract
Modern software systems increasingly adopt microservice architectures (MSA) to achieve modularity, scalability, and independent deployment. However, the decentralized nature of microservices introduces complex challenges in resource allocation, load balancing, and maintaining system-wide performance under dynamic workloads. Traditional orchestration methods often rely on heuristic or static rules that are insufficient for optimizing resource usage in highly variable and interactive environments.
This research explores the application of game theory as a formal framework for modeling and optimizing interactions among microservices. In this approach, each microservice is treated as a rational agent or player that independently selects strategies for resource consumption, scaling, or request routing. By applying models of non-cooperative games, such as congestion games, we identify equilibrium states (e.g., Nash equilibrium) that ensure stable and fair allocation of limited resources. In cooperative settings, game-theoretic mechanisms like Nash Bargaining can promote system-wide optimization through strategic coordination.
Simulation results demonstrate that game-theoretic strategies can significantly improve performance metrics, including average response time, resource utilization, and system resilience, compared to conventional approaches. Moreover, the integration of game-theoretic models with machine learning enables adaptive decision-making, allowing services to update strategies based on observed system states and predicted loads.
The paper shows that game theory provides a powerful and scalable foundation for the self-optimization of microservice-based systems. It opens new possibilities for designing intelligent orchestration layers capable of dynamically balancing autonomy and coordination in distributed software environments.
Keywords
microservice architecture, optimization, game theory, Nash equilibrium, resource allocation, container orchestration, quality of service (QoS)
Full Text:
PDF
References
1. Kulahin, V. P., Ulichev, O. S., & Dorenskyi, O. P. (2024). Innovative Solutions and Benefits of Microservice Architecture for Software Products. Central Ukrainian Scientific Bulletin. Technical Sciences, 10(41, Part 1), 16–29. https://doi.org/10.32515/2664-262X.2024.10(41).16-29.
2. Dragoni, N., Lanese, I., Larsen, S. T., Mazzara, M., Mustafin, R., & Safina, L. (2018). Microservices: How to make your application scale. Lecture Notes in Computer Science, 10742, 95–104. https://doi.org/10.1007/978-3-319-74313-4_8.
3. Altman, E., Boulogne, T., El-Azouzi, R., Jiménez, T., & Wynter, L. (2006). A survey on networking games in telecommunications. Computers & Operations Research, 33(2), 286–311. https://doi.org/10.1016/j.cor.2004.06.005.
4. Wei, G., Vasilakos, A. V., Zheng, Y., & Xiong, N. (2010). A game-theoretic method of fair resource allocation for cloud computing services. The Journal of Supercomputing, 54(2), 252–269. https://doi.org/10.1007/s11227-009-0318-1.
5. Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the National Academy of Sciences, 36(1), 48–49. https://doi.org/10.1073/pnas.36.1.48.
6. Ardagna, D., Panicucci, B., & Passacantando, M. (2013). Generalized Nash equilibria for the service provisioning problem in cloud systems. IEEE Transactions on Services Computing, 6(4), 429–442. https://doi.org/10.1109/TSC.2012.14.
7. Kaur, K., Dhand, T., Kumar, N., & Zeadally, S. (2017). Container-as-a-Service at the edge: Trade-off between energy efficiency and service availability at fog nano data centers. IEEE Wireless Communications, 24(3), 48–56. https://doi.org/10.1109/MWC.2017.1600427.
8. Yan, S., Peng, M., Abana, M. A., & Wang, W. (2017). An evolutionary game for user access mode selection in fog radio access networks. IEEE Access, 5, 2200–2210. https://doi.org/10.1109/ACCESS.2017.2654266.
9. Luo, R., Ye, W., Sun, J., Liu, X., & Zhang, S. (2019). Runtime resource management for microservices- based applications: A congestion game approach. In Proceedings of the 14th International Conference on Collaborative Computing (CollaborateCom), LNICST 268 (pp. 676–687). https://doi.org/10.1007/978-3- 030-12981-1_47.
10. He, Q., Wang, H., Jin, H., et al. (2020). A game-theoretical approach for user allocation in edge computing environment. IEEE Transactions on Parallel and Distributed Systems, 31(4), 515–529. https://doi.org/10.1109/TPDS.2019.2938944.
11. Kumar, S., Sharma, V., You, I., et al. (2022). A game-theoretic approach for increasing resource utilization in edge computing enabled IoT. IEEE Access, 10, 57974–57989. doi.org/10.1109/ACCESS.2022.3175850.
12. Na, J., Lin, K.-J., Huang, Z., & Zhou, S. (2015). An evolutionary game approach on IoT service selection for balancing device energy consumption. In Proceedings of the 12th IEEE International Conference on e- Business Engineering (ICEBE) (pp. 331–338). https://doi.org/10.1109/ICEBE.2015.64.
13. Monderer, D., & Shapley, L. S. (1996). Potential games. Games and Economic Behavior, 14(1), 124–143. https://doi.org/10.1006/game.1996.0044.
14. Velasquez, K., Abreu, D. P., Curado, M., & Monteiro, E. (2017). Service placement for latency reduction in the Internet of Things. Annals of Telecommunications, 72(1–2), 105–115. https://doi.org/10.1007/s12243-016-0524-9
15. Baresi, L., Guinea, S., Leva, A., & Quattrocchi, G. (2016). A discrete-time feedback controller for containerized cloud applications. In Proceedings of the ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE) (pp. 217–228). https://doi.org/10.1145/2950290.2950328.
16. Guerrero, C., Lera, I., & Juiz, C. (2018). Resource optimization of container orchestration: A case study in multi-cloud microservices-based applications. The Journal of Supercomputing, 74(7), 2956–2983. https://doi.org/10.1007/s11227-018-2345-2.
Citations
1. Кулагін В. П., Улічев О. С., Доренський О. П. Інноваційні рішення та переваги мікросервісної архітектури програмних продуктів. Центральноукраїнський науковий вісник. Технічні науки. 2024. Вип. 10(41), ч. 1. С. 16–29. DOI: 10.32515/2664-262X.2024.10(41).16-29.
2. Dragoni N., et al. Microservices: How to make your application scale. Lecture Notes in Computer Science. 2018. Vol. 10742. P. 95–104. DOI: 10.1007/978-3-319-74313-4_8.
3. Altman E., et al. A survey on networking games in telecommunications. Computers & Operations Research. 2006. Vol. 33, № 2. P. 286–311. DOI: 10.1016/j.cor.2004.06.005.
4. Wei G., et al. A game-theoretic method of fair resource allocation for cloud computing services. The Journal of Supercomputing. 2010. Vol. 54, № 2. P. 252–269. DOI: 10.1007/s11227-009-0318-1.
5. Nash J. F. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences. 1950. Vol. 36, № 1. P. 48–49. DOI: 10.1073/pnas.36.1.48.
6. Ardagna D., Panicucci B., Passacantando M. Generalized Nash equilibria for the service provisioning problem in cloud systems. IEEE Transactions on Services Computing. 2013. Vol. 6, № 4. P. 429–442. DOI: 10.1109/TSC.2012.14.
7. Kaur K., et al. Container-as-a-Service at the Edge: Trade-off between Energy Efficiency and Service Availability at Fog Nano Data Centers. IEEE Wireless Communications. 2017. Vol. 24, № 3. P. 48–56. DOI: 10.1109/MWC.2017.1600427.
8. Yan S., et al. An Evolutionary Game for User Access Mode Selection in Fog Radio Access Networks. IEEE Access. 2017. Vol. 5. P. 2200–2210. DOI: 10.1109/ACCESS.2017.2654266.
9. Luo R., et al. Runtime Resource Management for Microservices-Based Applications: A Congestion Game Approach. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST). 2019. Vol. 268. P. 676–687. DOI: 10.1007/978-3-030-12981-1_47.
10. He Q., Wang H., Jin H. A Game-Theoretical Approach for User Allocation in Edge Computing Environment. IEEE Transactions on Parallel and Distributed Systems. 2020. Vol. 31, № 4. P. 515–529. DOI: 10.1109/TPDS.2019.2938944.
11. Kumar S., et al. A Game-Theoretic Approach for Increasing Resource Utilization in Edge Computing Enabled IoT. IEEE Access. 2022. Vol. 10. P. 57974–57989. DOI: 10.1109/ACCESS.2022.3175850.
12. Na J., et al. An evolutionary game approach on IoT service selection for balancing device energy consumption. Proc. 12th IEEE Int. Conf. on e-Business Engineering (ICEBE). 2015. P. 331–338. DOI: 10.1109/ICEBE.2015.64.
13. Monderer D., Shapley L. S. Potential Games. Games and Economic Behavior. 1996. Vol. 14, № 1. P. 124–143. DOI: 10.1006/game.1996.0044.
14. Velasquez K., et al. Service placement for latency reduction in the Internet of Things. Annals of Telecommunications. 2017. Vol. 72, № 1–2. P. 105–115. DOI: 10.1007/s12243-016-0524-9.
15. Baresi L., et al. A discrete-time feedback controller for containerized cloud applications. Proc. ACM SIGSOFT Int. Symp. Foundations of Software Engineering (FSE). 2016. P. 217–228. DOI: 10.1145/2950290.2950328.
16. Guerrero C., Lera I., Juiz C. Resource optimization of container orchestration: a case study in multi-cloud microservices-based applications. The Journal of Supercomputing. 2018. Vol. 74, № 7. P. 2956–2983. DOI: 10.1007/s11227-018-2345-2.
Copyright (©) 2025, Oleksandr Ulichev, Victor Kulahin
Game-Theoretic Approach to Microservice Optimization
About the Authors
Oleksandr Ulichev, PhD (Candidate of Technical Sciences), Senior Lecturer of Cybersecurity and Software Academic Department, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0003-3736-9613, e-mail: askin79@gmail.com
Victor Kulahin, PhD student in Computer Science, Private Higher Education Establishment "European University", Kyiv, Ukraine, ORCID: https://orcid.org/0009-0004-1334-2277, e-mail: victor@kulagin.com.ua
Abstract
Keywords
Full Text:
PDFReferences
1. Kulahin, V. P., Ulichev, O. S., & Dorenskyi, O. P. (2024). Innovative Solutions and Benefits of Microservice Architecture for Software Products. Central Ukrainian Scientific Bulletin. Technical Sciences, 10(41, Part 1), 16–29. https://doi.org/10.32515/2664-262X.2024.10(41).16-29.
2. Dragoni, N., Lanese, I., Larsen, S. T., Mazzara, M., Mustafin, R., & Safina, L. (2018). Microservices: How to make your application scale. Lecture Notes in Computer Science, 10742, 95–104. https://doi.org/10.1007/978-3-319-74313-4_8.
3. Altman, E., Boulogne, T., El-Azouzi, R., Jiménez, T., & Wynter, L. (2006). A survey on networking games in telecommunications. Computers & Operations Research, 33(2), 286–311. https://doi.org/10.1016/j.cor.2004.06.005.
4. Wei, G., Vasilakos, A. V., Zheng, Y., & Xiong, N. (2010). A game-theoretic method of fair resource allocation for cloud computing services. The Journal of Supercomputing, 54(2), 252–269. https://doi.org/10.1007/s11227-009-0318-1.
5. Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the National Academy of Sciences, 36(1), 48–49. https://doi.org/10.1073/pnas.36.1.48.
6. Ardagna, D., Panicucci, B., & Passacantando, M. (2013). Generalized Nash equilibria for the service provisioning problem in cloud systems. IEEE Transactions on Services Computing, 6(4), 429–442. https://doi.org/10.1109/TSC.2012.14.
7. Kaur, K., Dhand, T., Kumar, N., & Zeadally, S. (2017). Container-as-a-Service at the edge: Trade-off between energy efficiency and service availability at fog nano data centers. IEEE Wireless Communications, 24(3), 48–56. https://doi.org/10.1109/MWC.2017.1600427.
8. Yan, S., Peng, M., Abana, M. A., & Wang, W. (2017). An evolutionary game for user access mode selection in fog radio access networks. IEEE Access, 5, 2200–2210. https://doi.org/10.1109/ACCESS.2017.2654266.
9. Luo, R., Ye, W., Sun, J., Liu, X., & Zhang, S. (2019). Runtime resource management for microservices- based applications: A congestion game approach. In Proceedings of the 14th International Conference on Collaborative Computing (CollaborateCom), LNICST 268 (pp. 676–687). https://doi.org/10.1007/978-3- 030-12981-1_47.
10. He, Q., Wang, H., Jin, H., et al. (2020). A game-theoretical approach for user allocation in edge computing environment. IEEE Transactions on Parallel and Distributed Systems, 31(4), 515–529. https://doi.org/10.1109/TPDS.2019.2938944.
11. Kumar, S., Sharma, V., You, I., et al. (2022). A game-theoretic approach for increasing resource utilization in edge computing enabled IoT. IEEE Access, 10, 57974–57989. doi.org/10.1109/ACCESS.2022.3175850.
12. Na, J., Lin, K.-J., Huang, Z., & Zhou, S. (2015). An evolutionary game approach on IoT service selection for balancing device energy consumption. In Proceedings of the 12th IEEE International Conference on e- Business Engineering (ICEBE) (pp. 331–338). https://doi.org/10.1109/ICEBE.2015.64.
13. Monderer, D., & Shapley, L. S. (1996). Potential games. Games and Economic Behavior, 14(1), 124–143. https://doi.org/10.1006/game.1996.0044.
14. Velasquez, K., Abreu, D. P., Curado, M., & Monteiro, E. (2017). Service placement for latency reduction in the Internet of Things. Annals of Telecommunications, 72(1–2), 105–115. https://doi.org/10.1007/s12243-016-0524-9
15. Baresi, L., Guinea, S., Leva, A., & Quattrocchi, G. (2016). A discrete-time feedback controller for containerized cloud applications. In Proceedings of the ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE) (pp. 217–228). https://doi.org/10.1145/2950290.2950328.
16. Guerrero, C., Lera, I., & Juiz, C. (2018). Resource optimization of container orchestration: A case study in multi-cloud microservices-based applications. The Journal of Supercomputing, 74(7), 2956–2983. https://doi.org/10.1007/s11227-018-2345-2.
Citations
1. Кулагін В. П., Улічев О. С., Доренський О. П. Інноваційні рішення та переваги мікросервісної архітектури програмних продуктів. Центральноукраїнський науковий вісник. Технічні науки. 2024. Вип. 10(41), ч. 1. С. 16–29. DOI: 10.32515/2664-262X.2024.10(41).16-29.
2. Dragoni N., et al. Microservices: How to make your application scale. Lecture Notes in Computer Science. 2018. Vol. 10742. P. 95–104. DOI: 10.1007/978-3-319-74313-4_8.
3. Altman E., et al. A survey on networking games in telecommunications. Computers & Operations Research. 2006. Vol. 33, № 2. P. 286–311. DOI: 10.1016/j.cor.2004.06.005.
4. Wei G., et al. A game-theoretic method of fair resource allocation for cloud computing services. The Journal of Supercomputing. 2010. Vol. 54, № 2. P. 252–269. DOI: 10.1007/s11227-009-0318-1.
5. Nash J. F. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences. 1950. Vol. 36, № 1. P. 48–49. DOI: 10.1073/pnas.36.1.48.
6. Ardagna D., Panicucci B., Passacantando M. Generalized Nash equilibria for the service provisioning problem in cloud systems. IEEE Transactions on Services Computing. 2013. Vol. 6, № 4. P. 429–442. DOI: 10.1109/TSC.2012.14.
7. Kaur K., et al. Container-as-a-Service at the Edge: Trade-off between Energy Efficiency and Service Availability at Fog Nano Data Centers. IEEE Wireless Communications. 2017. Vol. 24, № 3. P. 48–56. DOI: 10.1109/MWC.2017.1600427.
8. Yan S., et al. An Evolutionary Game for User Access Mode Selection in Fog Radio Access Networks. IEEE Access. 2017. Vol. 5. P. 2200–2210. DOI: 10.1109/ACCESS.2017.2654266.
9. Luo R., et al. Runtime Resource Management for Microservices-Based Applications: A Congestion Game Approach. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST). 2019. Vol. 268. P. 676–687. DOI: 10.1007/978-3-030-12981-1_47.
10. He Q., Wang H., Jin H. A Game-Theoretical Approach for User Allocation in Edge Computing Environment. IEEE Transactions on Parallel and Distributed Systems. 2020. Vol. 31, № 4. P. 515–529. DOI: 10.1109/TPDS.2019.2938944.
11. Kumar S., et al. A Game-Theoretic Approach for Increasing Resource Utilization in Edge Computing Enabled IoT. IEEE Access. 2022. Vol. 10. P. 57974–57989. DOI: 10.1109/ACCESS.2022.3175850.
12. Na J., et al. An evolutionary game approach on IoT service selection for balancing device energy consumption. Proc. 12th IEEE Int. Conf. on e-Business Engineering (ICEBE). 2015. P. 331–338. DOI: 10.1109/ICEBE.2015.64.
13. Monderer D., Shapley L. S. Potential Games. Games and Economic Behavior. 1996. Vol. 14, № 1. P. 124–143. DOI: 10.1006/game.1996.0044.
14. Velasquez K., et al. Service placement for latency reduction in the Internet of Things. Annals of Telecommunications. 2017. Vol. 72, № 1–2. P. 105–115. DOI: 10.1007/s12243-016-0524-9.
15. Baresi L., et al. A discrete-time feedback controller for containerized cloud applications. Proc. ACM SIGSOFT Int. Symp. Foundations of Software Engineering (FSE). 2016. P. 217–228. DOI: 10.1145/2950290.2950328.
16. Guerrero C., Lera I., Juiz C. Resource optimization of container orchestration: a case study in multi-cloud microservices-based applications. The Journal of Supercomputing. 2018. Vol. 74, № 7. P. 2956–2983. DOI: 10.1007/s11227-018-2345-2.
Copyright (©) 2025, Oleksandr Ulichev, Victor Kulahin