DOI: https://doi.org/10.32515/2664-262X.2025.12(43).1.308-315

Optimal Control of Active Power Generation Levels by Renewable Energy Plants

Petro Plieshkov, Valentyn Soldatenko, Vasyl Zinzura, Oleksandr Sirikov, Serhii Plieshkov

About the Authors

Petro Plieshkov, Professor, Candidate of Technical Sciences, Head of the Department of Electrical Systems and Energy Management, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0003-2141-4811, e-mail: kafedra.etsem@gmail.com

Valentyn Soldatenko, Associate Professor, Candidate of Technical Sciences, Associate Professor of the Department of Electrical Systems and Energy Management, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-7781-9343, e-mail: kirovograd41@gmail.com

Vasyl Zinzura, Associate Professor, Candidate of Technical Sciences, Associate Professor of the Department of Electrical Systems and Energy Management, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0001-6357-064X, e-mail: vasiliyzinzura@gmail.com

Oleksandr Sirikov, Associate Professor, Candidate of Technical Sciences, Associate Professor of the Department of Electrical Systems and Energy Management, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-7058-2697, e-mail: asirikov@i.ua

Serhii Plieshkov, Associate Professor, Candidate of Technical Sciences, Associate Professor of the Department of Automation of Production Processes, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-3120-5397, e-mail: sergploff@gmail.com.

Abstract

The purpose of this article is to develop an effective approach to automated control of the level of active power generation in systems based on renewable energy sources in order to ensure maximum electricity generation while complying with the regulatory permissible voltage deviation limits at the points of connection of electricity consumers to the distribution grid. The article analyzes the problems that arise when generating electricity from renewable sources in the conditions of distribution grids - in particular, exceeding the permissible voltage level at the points of connection and reducing the economic efficiency of generation when using typical automatic control systems. It is proposed to improve the system for automatic control of the level of active power generation by installations with renewable energy sources by formalizing the control process as a multi-criteria optimization problem. The main criteria are profit from the sale of electricity and economic losses from voltage quality disturbances. The problem is solved by the method of approximation to the utopian point using the Chebyshev metric and numerical methods of discrete optimization. For this purpose, a step-by-step algorithm was developed, which involves discretization of the area of permissible generation values, calculation of the Pareto-optimal set, determination of the utopian point and minimization of the distance to it. In order to assess the effectiveness of the proposed approach, a computer model of the automatic control system was built, which is based on the specified algorithm. The model was tested in a simulation environment, where it was compared with a traditional control system that provides a strict limitation of the voltage deviation. The simulation results showed that the proposed approach provides an increase in the volume of electricity supply to the network by 8.1% compared to the base model. At the same time, the level of the steady-state voltage deviation at the connection point meets the regulatory requirements for the quality of electricity (integral probability - 95%). Thus, the improved automatic control system allows achieving both technical and economic optimality of the functioning of renewable energy sources in the power system

Keywords

renewable energy sources, multi-criteria optimization, distribution grid

Full Text:

PDF

References

1. Lezhniuk, P. D., Rubanenko, O. Ye., & Hunko, I. O. (2015). Influence of solar power plants on the voltage of 0.4 kV consumers. Energy: Economics, Technology, Ecology: Scientific Journal, 3(41), 7–13 [in Ukrainian].

2. Lezhniuk, P. D., Rubanenko, O. Ye., & Hunko, I. O. (2015). Influence of solar power plant inverters on power quality indicators in local electrical systems. Bulletin of Khmelnytskyi National University. Technical Sciences, (2), 134–145 [in Ukrainian].

3. Irfan, R., Gulzar, M. M., Shakoor, A., Habib, S., Ahmad, H., Hasib, S. A., & Tehreem, H. (2025). Robust operating strategy for voltage and frequency control in a non-linear hybrid renewable energy-based power system using communication time delay. Computers and Electrical Engineering, 123, 110119.

4. Irfan, R., Gulzar, M. M., Habib, S., Shakoor, A., Ahmad, H., & Murtaza, A. F. (2025). Multistage control for frequency and voltage stability in a multi-area power network with nonlinear dynamics. Results in Engineering, 26, 104724.

5. Ali, G., Aly, H., & Little, T. (2024). Automatic generation control of a multi-area hybrid renewable energy system using a proposed novel GA-fuzzy logic self-tuning PID controller. Energies, 17(9), 2000.

6. Soldatenko, V. P. (2017). Automatic control of the operation modes of the distribution electrical network in the presence of distributed generation sources. In Automation and Computer-Integrated Technologies in Industry, Telecommunications, Energy, and Transport: Proceedings of the All-Ukrainian Scientific and Practical Online Conference (Kropyvnytskyi, November 16–17, 2017) (pp. 88–90). Kropyvnytskyi: CNTU [in Ukrainian].

7. Plieshkov, P. H., & Soldatenko, V. P. (2018). Control of operating modes of the distribution electrical network in the presence of distributed generation sources. In Applied Scientific and Technical Research: Proceedings of the 2nd International Scientific and Practical Conference (Ivano-Frankivsk, April 3–5, 2018) (p. 71). Ivano-Frankivsk: Symfoniia forte [in Ukrainian].

8. Zinzura, V. V. (2012). Methods for solving the problem of multicriteria optimization of voltage regulation in electrical networks. Collection of Scientific Works of Kirovohrad National Technical University. Engineering in Agricultural Production, Mechanical Engineering, Automation, 25(1), 350–360 [in Ukrainian].

9. Martins, J. R., & Ning, A. (2021). Engineering design optimization. Cambridge: Cambridge University Press.

10. Gill, P. E., Murray, W., & Wright, M. H. (2021). Numerical linear algebra and optimization. Philadelphia: Society for Industrial and Applied Mathematics.

Citations

1. Лежнюк П. Д., Рубаненко О. Є., Гунько І. О. Вплив сонячних електричних станцій на напругу споживачів 0,4 кВ. Енергетика: економіка, технології, екологія : наук. журн. 2015. № 3 (41). С. 7–13.

2. Лежнюк П. Д., Рубаненко О. Є., Гунько І. О. Вплив інверторів СЕС на показники якості електричної енергії в ЛЕС. Вісник Хмельницького національного університету. Технічні науки. 2015. № 2. С. 134–145.

3. Irfan R., Gulzar M. M., Shakoor A., Habib S., Ahmad H., Hasib S. A., Tehreem H. Robust operating strategy for voltage and frequency control in a non-linear hybrid renewable energy-based power system using communication time delay. Computers and Electrical Engineering. 2025. Vol. 123. P. 110119.

4. Irfan R., Gulzar M. M., Habib S., Shakoor A., Ahmad H., Murtaza A. F. Multistage control for frequency and voltage stability in a multi-area power network with nonlinear dynamics. Results in Engineering. 2025. Vol. 26. P. 104724.

5. Ali G., Aly H., Little T. Automatic generation control of a multi-area hybrid renewable energy system using a proposed novel GA-fuzzy logic self-tuning PID controller. Energies. 2024. Vol. 17 (9). P. 2000.

6. Солдатенко В. П. Автоматичне керування режимами роботи розподільної електричної мережі при наявності джерел розосередженої генерації. Автоматика та комп’ютерно-інтегровані технології у промисловості, телекомунікаціях, енергетиці та транспорті : матеріали Всеукр. наук.-практ. інтернет-конф. (Кропивницький, 16–17 листоп. 2017 р.). Кропивницький : ЦНТУ, 2017. С. 88–90.

7. Плєшков П. Г., Солдатенко В. П. Керування режимами роботи розподільної електричної мережі при наявності джерел розосередженої генерації. Прикладні науково-технічні дослідження : матер. ІІ міжнар. наук.-практ. конф. (Івано-Франківськ, 3–5 квіт. 2018 р.). Івано-Франківськ : Симфонія форте, 2018. С. 71.

8. Зінзура В. В. Методи розв’язку задачі багатокритеріальної оптимізації регулювання напруги в електричних мережах. Зб. наук. пр. Кіровоградського нац. техн. ун-ту. Техніка в сільськогосподарському виробництві, галузеве машинобудування, автоматизація. 2012. Вип. 25, ч. 1. С. 350–360.

v

9. Martins J. R., Ning A. Engineering design optimization. Cambridge : Cambridge University Press, 2021.

10. Gill P. E., Murray W., Wright M. H. Numerical linear algebra and optimization. Philadelphia : Society for Industrial and Applied Mathematics, 2021.

Copyright (©) 2025, Volodymyr Yatsun, Ivan Skrynnik, Gennadiy Portnov, Olha Horpynchenko