DOI: https://doi.org/10.32515/2664-262X.2025.12(43).1.333-341

Computer Modeling of the Impact of Redundancy on the Accuracy of Determining the Current Parameters of the Sensor Logarithmic Transformation Function

Hanna Korohod, Nataliia Chuprynka, Anton Kyrychenko

About the Authors

Hanna Korohod, PhD (Candidate of Technical Sciences), Senior Lecturer of the Department of Information and Computer Technologies, Kyiv National University of Technology and Design, Kyiv, Ukraine, ORCID: http://orcid.org/0000-0003-1670-3125, e-mail: korogod.go@knutd.com.ua.

Nataliia Chuprynka, Associate Professor, PhD (Candidate of Technical Sciences), Associate Professor of the Department of Information and Computer Technologies, Kyiv National University of Technology and Design, Kyiv, Ukraine, ORCID: https://orcid.org/0000-0002-8952-7567, e-mail: chuprinka.nv@knutd.com.ua

Anton Kyrychenko, PhD (Candidate of Technical Sciences), Senior Lecturer of the Department of Information and Computer Technologies, Kyiv National University of Technology and Design, Kyiv, Ukraine, ORCID: https://orcid.org/0000-0003-0041-3799, e-mail: kirichenko.am@knutd.com.ua

Abstract

Determination and control of sensor parameters is one of the main reasons for obtaining reliable information, since it allows timely detection of deviations in the operation of the sensor and the entire automated system as a whole. Therefore, the purpose of the work is to increase the accuracy of measuring the current values of the parameters of the nonlinear sensor transformation function. Computer modeling was carried out using the example of a silicon photodiode FD307 photodiode with a logarithmic conversion function. As a result of the modeling, such values of calibrated fluxes were found, which ensure that the values of the parameters of the conversion function are obtained as close as possible to their real (simulated) values. At the same time, the values of the relative errors of parameter determination are hundreds and thousandths of a percent. The work also considered the influence of the dark flux parameter on the accuracy of determining the current values of the parameters of the conversion function. It was established that the deviation of the value of the dark flux value from its nominal value significantly affects the voltage value on the ohmic elements of the diode and does not affect the value of the thermal potential. For high-precision measurement of the current parameters of the conversion function, the recommended deviation of the dark flux should not exceed one percent. As a result of applying redundant methods for a photodiode with a logarithmic transformation function, the following conclusions were obtained: 1) determining the current value of the thermal potential according to the equation of redundant measurements does not depend on the voltage deviations on the ohmic elements of the diode, 2) determining the current value of the voltage on the ohmic elements of the diode according to the corresponding equation of redundant measurements depends on the thermal potential deviations, 3) the values of the calibrated flows affect the accuracy of determining the current values of the parameters of the logarithmic transformation function, 4) to obtain the values of the parameters of the transformation function that are as close as possible to their current values, it is necessary to set fixed values of the calibrated flows, 5) the accuracy of determining the voltage on the ohmic elements of the diode is also strongly influenced by the value of the dark flux, 6) the deviation of the value of the dark flux from the nominal value indicates structural changes in the sensor, which is a signal to replace it.

Keywords

logarithmic transformation function parameters, redundancy, calibrated radiation fluxes

Full Text:

PDF

References

1. Awad, M., Kiesse, T. S., Assaghir, Z., & Ventura, A. (2019). Convergence of sensitivity analysis methods for evaluating combined influences of model inputs. Reliability Engineering and System Safety, 189, 109–122. https://doi.org/10.1016/j.ress.2019.03.050

2. Aswal, N., Sen, S., & Mevel, L. (2022). Switching Kalman filter for damage estimation in the presence of sensor faults. Mechanical Systems and Signal Processing, 175, 109116. https://doi.org/10.1016/j.ymssp.2022.109116

3. Glukhov, S., Sakovych, L., Koziel, V., Semekha, S., & Babii, O. (2024, May 19–20). Construction of an automated system for metrological support of digital measuring instruments using information technologies. In International Scientific Discussion: Problems, Tasks and Prospects. 9th International Scientific and Practical Conference (No. 45 (201), pp. 603–607). https://doi.org/10.51582/interconf.19- 20.05.2024.061 [in Ukrainian].

4. Honsior, O., & Demidov, O. (2024). Application of serverless systems for processing metrological metadata in IoT. ISTCMTM, 85(4), 25–29. https://doi.org/10.23939/istcmtm2024.04.025 [in Ukrainian].

5. Kang, Q., Lin, Y., & Tao, J. (2023). A reliability analysis of a MEMS flow sensor with an accelerated degradation test. Sensors, 23(21), 8733. https://doi.org/10.3390/s23218733

6. Klebba, M., Frącz, A., Brodzicki, M., Rzepkowska, A., & Wąż, M. (2024). Time constant as the main component to optimize the resistance temperature sensors’ calibration process. Sensors, 24(2), 487. https://doi.org/10.3390/s24020487

7. Mykytyuk, Z., Shymchyshyn, O., Zvorskyi, A., & Markiv, D. (2024). Automation of microclimate control processes in residential premises. Information and Communication Technologies, Electronic Engineering, 4(1), 155–162. https://doi.org/10.23939/ictee2024.01.155

8. Panovyk, U. P., Hidei, R. V., & Bohonis, O. O. (2024). Integrated metrological systems in Industry 4.0. Scientific Notes of the Ukrainian Academy of Printing, 1(68), 71–82 [in Ukrainian].

9. Panovyk, U., & Hidei, R. (2025). Mathematical modeling of the process of aggregation and processing of measurement information in automated metrological monitoring systems. Measuring and Computing Devices in Technological Processes, 82(2), 37–44. vottp.khmnu.edu.ua/index.php/vottp/article/view/478 [in Ukrainian].

10. Shcherban’, V., Korogod, G., Chaban, V., Kolysko, O., Shcherban’, Yu., & Shchutska, G. (2019). Computer simulation methods of redundant measurements with the nonlinear transformation function. Eastern-European Journal of Enterprise Technologies, 98(2/5), 16–22. https://doi.org/10.15587/1729- 4061.2019.160830

11. Shcherban’, V., Korohod, H., Chuprynka, N., Kolysko, O., Shcherban’, Y., & Shchutska, G. (2023). Computer analysis of multiple measurements with the sensor’s quadratic transformation function. Eastern- European Journal of Enterprise Technologies, 1(5/121), 17–25. https://doi.org/10.15587/1729- 4061.2023.273299

12. Shcherban’, V., Korohod, H., Kolysko, O., Kyrychenko, A., Shcherban’, Y., & Shchutska, G. (2024). Determining features in the application of redundancy for the thermistor cubic transformation function using computer simulation. Eastern-European Journal of Enterprise Technologies, 1(5/127), 33–40. https://doi.org/10.15587/1729-4061.2024.297619

13. Shcherban’, V., Korogod, G., Kolysko, O., Kolysko, M., Shcherban’, Yu., & Shchutska, G. (2021). Computer simulation of logarithmic transformation function to expand the range of high-precision measurements. Eastern-European Journal of Enterprise Technologies. Information and Controlling System, 2(9/110), 27–36. https://doi.org/10.15587/1729-4061.2021.227984

14. Varshney, A., Garg, N., Nagla, K. S., Nair, T. S., Jaiswal, S. K., Yadav, S., & Aswal, D. K. (2021). Challenges in sensors technology for Industry 4.0 for futuristic metrological applications. MAPAN, 2, 215– 226. https://doi.org/10.1007/s12647-021-00453-1

15. Wang, L., Tao, H.-B., Dong, H., Shao, Z.-B., & Wang, F. (2020). A non-linear temperature compensation model for improving the measurement accuracy of an inductive proximity sensor and its application- specific integrated circuit implementation. Sensors, 20(17), 5010. https://doi.org/10.3390/s20175010

16. Yang, C., Bohlin, G., & Oechtering, T. (2024). Environmental variation or instrumental drift? A probabilistic approach to gas sensor drift modeling and evaluation. IEEE Sensors, 1–4. https://doi.org/10.1109/SENSORS60989.2024.10784897

17. Zhu, M., Li, J., Wang, W., & Chen, D. (2021). Self-detection and self-diagnosis methods for sensors in intelligent integrated sensing system. IEEE Sensors Journal, 21(17), 19247–19254. https://doi.org/10.1109/JSEN.2021.3090990.

Citations

1. Klebba M., Frącz A., Brodzicki M., Rzepkowska A., Wąż M. Time constant as the main component to optimize the resistance temperature sensors’ calibration process. Sensors. 2024. Vol. 24 (2). P. 487. DOI: 10.3390/s24020487.

2. Wang L., Tao H.-B., Dong H., Shao Z.-B., Wang F. A non-linear temperature compensation model for improving the measurement accuracy of an inductive proximity sensor and its application-specific integrated circuit implementation. Sensors. 2020. Vol. 20 (17). P. 5010. DOI: 10.3390/s20175010.

3. Пановик У. П., Гідей Р. В., Богоніс О. О. Інтегровані метрологічні системи в індустрії 4.0. Наукові записки Української академії друкарства. 2024. № 1 (68). С. 71–82.

4. Глухов С., Сакович Л., Козєл В., Семеха С., Бабій О. Побудова автоматизованої системи метрологічного забезпечення цифрових вимірювальних приладів з використанням інформаційних технологій. International Scientific Discussion: Problems, Tasks and Prospects : 9th Int. Sci. and Practical Conf. (May 19–20, 2024). № 45 (201). P. 603–607. DOI: 10.51582/interconf.19-20.05.2024.061.

5. Varshney A., Garg N., Nagla K. S., Nair T. S., Jaiswal S. K., Yadav S., Aswal D. K. Challenges in sensors technology for Industry 4.0 for futuristic metrological applications. MAPAN. 2021. № 2. P. 215–226. DOI: 10.1007/s12647-021-00453-1.

6. Kang Q., Lin Y., Tao J. A reliability analysis of a MEMS flow sensor with an accelerated degradation test. Sensors. 2023. Vol. 23 (21). P. 8733. DOI: 10.3390/s23218733.

7. Awad M., Kiesse T. S., Assaghir Z., Ventura A. Convergence of sensitivity analysis methods for evaluating combined influences of model inputs. Reliability Engineering and System Safety. 2019. Vol. 189. P. 109–122. DOI: 10.1016/j.ress.2019.03.050.

8. Yang C., Bohlin G., Oechtering T. Environmental variation or instrumental drift? A probabilistic approach to gas sensor drift modeling and evaluation. IEEE Sensors. 2024. P. 1–4. DOI: 10.1109/SENSORS60989.2024.10784897.

9. Zhu M., Li J., Wang W., Chen D. Self-detection and self-diagnosis methods for sensors in intelligent integrated sensing system. IEEE Sensors Journal. 2021. Vol. 21 (17). P. 19247–19254. DOI: 10.1109/JSEN.2021.3090990.

10. Aswal N., Sen S., Mevel L. Switching Kalman filter for damage estimation in the presence of sensor faults. Mechanical Systems and Signal Processing. 2022. Vol. 175. P. 109116. DOI: 10.1016/j.ymssp.2022.109116.

11. Гонсьор О., Демідов О. Застосування безсерверних систем для обробки метрологічних метаданих в ІоT. ISTCMTM. 2024. Vol. 85 (4), № 4. С. 25–29. DOI: 10.23939/istcmtm2024.04.025.

12. Пановик У., Гідей Р. Математичне моделювання процесу агрегації та обробки вимірювальної інформації в автоматизованих метрологічних системах моніторингу. Measuring and Computing Devices in Technological Processes. 2025. Vol. 82 (2). P. 37–44. URL: https://vottp.khmnu.edu.ua/index.php/vottp/article/view/478 (дата звернення: 18.06.2025).

13. Shcherban’ V., Korogod G., Chaban V., Kolysko O., Shcherban’ Yu., Shchutska G. Computer simulation methods of redundant measurements with the nonlinear transformation function. Eastern-European Journal of Enterprise Technologies. 2019. Vol. 98 (2/5). P. 16–22. DOI: 10.15587/1729-4061.2019.160830.

14. Shcherban’ V., Korohod H., Chuprynka N., Kolysko O., Shcherban’ Y., Shchutska G. Computer analysis of multiple measurements with the sensor’s quadratic transformation function. Eastern-European Journal of Enterprise Technologies. 2023. Vol. 1 (5/121). P. 17–25. DOI: 10.15587/1729-4061.2023.273299.

15. Shcherban’ V., Korohod H., Kolysko O., Kyrychenko A., Shcherban’ Y., Shchutska G. Determining features in the application of redundancy for the thermistor cubic transformation function using computer simulation. Eastern-European Journal of Enterprise Technologies. 2024. Vol. 1 (5/127). P. 33–40. DOI: 10.15587/1729-4061.2024.297619.

16. Shcherban’ V., Korogod G., Kolysko O., Kolysko M., Shcherban’ Yu., Shchutska G. Computer simulation of logarithmic transformation function to expand the range of high-precision measurements. Eastern- European Journal of Enterprise Technologies. Information and Controlling System. 2021. Vol. 2 (9/110).P. 27–36. DOI: 10.15587/1729-4061.2021.227984.

Copyright (©) 2025, Hanna Korohod, Nataliia Chuprynka, Anton Kyrychenko