DOI: https://doi.org/10.32515/2664-262X.2025.12(43).1.253-264
Digital Twin of a Cyber-Physical System for Washing Agricultural Machinery
About the Authors
Orest Filkin, PhD student in Industrial Mechanical Engineering, National Natural University of Ukraine, Lviv, Ukraine, ORCID: https://orcid.org/0009-0008-3994-9623, e-mail: filkin.orest@gmail.com
Anatoliy Tryhuba, Professor, Doctor of Technical Sciences, Head of the Department of Information Technologies, National Natural University of Ukraine, Lviv, Ukraine, ORCID: https://orcid.org/0000- 0001-8014-5661, e-mail: trianamik@gmail.com
Abstract
The purpose of this article is to develop a functional architecture of a digital twin as a component of a cyber- physical system for washing agricultural machinery, taking into account the real condition of the object being cleaned. Special attention is paid to ensuring adaptive control of the washing process based on current sensor data and forecasting of cleaning parameters to improve energy efficiency, optimize resource consumption, and reduce operator workload.
The research presents the functional interaction scheme of the system's core levels – physical, sensor, control (PLC), supervisory (SCADA), and digital twin level. A mathematical model is proposed based on the assessment of surface contamination level, machinery dimensions, temperature, and pressure. These input parameters form a feature vector, which is processed by a forecasting model that determines the optimal cleaning time and generates control signals for actuators. In the software implementation, the model consists of three key modules – input data processing, numerical integration of equations, and adaptive logic. To determine the optimal washing cycle duration, a neural network module trained on historical data is applied.
The study confirms the feasibility of using a digital twin within a cyber-physical system for the efficient and intelligent cleaning of agricultural equipment. The application of the forecasting model allows real-time adaptation of the process, significantly reducing water, electricity, and detergent consumption. The proposed approach facilitates the transition from conventional to intelligent technologies integrated into the digital manufacturing infrastructure and contributes to the implementation of Industry 4.0 principles in Ukrainian mechanical engineering.
Keywords
digital twin, cyber-physical system, technology, mechanical engineering, machinery washing, SCADA, forecasting, mathematical modeling, intelligent control, artificial neural network
Full Text:
PDF
References
1. Coulibaly, A., Toure, S., & Müller, T. (2022). Improving cleaning processes in agricultural machinery through optimized water jet parameters. Journal of Agricultural Engineering Research, 95(3), 255–264. https://doi.org/10.1016/j.jaer.2022.05.004
2. Zhang, Y., & Wang, J. (2018). Energy-efficient cleaning strategies for off-road agricultural vehicles. Biosystems Engineering, 174, 30–42. https://doi.org/10.1016/j.biosystemseng.2018.07.002
3. Sahu, J., & Singh, R. (2023). Integration of smart sensors for automated washing of agricultural equipment under variable field conditions. Smart Agricultural Technology, 6, 100202. https://doi.org/10.1016/j.atech.2023.100202
4. Zude, M., Herold, B., & Truppel, I. (2019). Smart cleaning of agricultural equipment: Adaptive control strategies based on sensor feedback. Computers and Electronics in Agriculture, 163, 104851. https://doi.org/10.1016/j.compag.2019.104851
5. Müller, J., & Reiter, M. (2021). Limitations of rule-based cleaning automation in agricultural vehicle maintenance. Precision Agriculture, 22(3), 456–470. https://doi.org/10.1007/s11119-020-09755-4
6. Tao, F., Qi, Q., Liu, A., & Kusiak, A. (2018). Data-driven smart manufacturing. Journal of Manufacturing Systems, 48, 157–169. https://doi.org/10.1016/j.jmsy.2018.01.006
7. Lu, Y., Morris, K. C., & Frechette, S. (2016). Current standards landscape for smart manufacturing systems. National Institute of Standards and Technology. nvlpubs.nist.gov/nistpubs/ir/2016/nist.ir.8107.pdf (Accessed: 15.09.2025).
8. Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In F. J. Kahlen, S. Flumerfelt, & A. Alves (Eds.), Transdisciplinary perspectives on complex systems. Cham: Springer. https://doi.org/10.1007/978-3-319-38756-7_4
9. Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23. https://doi.org/10.1016/j.mfglet.2014.12.001
10. Tao, F., Zhang, H., Liu, A., & Nee, A. Y. C. (2019). Digital twin in industry: State-of-the-art. IEEE Transactions on Industrial Informatics, 15(4), 2405–2415. https://doi.org/10.1109/TII.2018.2873186
11. Boschert, S., & Rosen, R. (2016). Digital twin – The simulation aspect. In P. Hehenberger & D. Bradley (Eds.), Mechatronic futures. Cham: Springer. https://doi.org/10.1007/978-3-319-32156-1_5
12. Verboven, P., Defraeye, T., Datta, A., & Nicolai, B. (2020). Digital twins of food process operations: The next step for food process models? Current Opinion in Food Science, 35, 1–8. https://doi.org/10.1016/j.cofs.2020.03.002
13. Kibulungu, J. W., & Laseinde, O. T. (2023). Automatic control system based on Industry 4.0, PLC, and SCADA. In Intelligent sustainable systems (pp. 183–197). Singapore: Springer. https://doi.org/10.1007/978-981-19-7660-5_16
14. Vyshnevskyi, V. P., Viietska, O. V., Harkushenko, O. M., Kniaziev, S. I., Liakh, O. V., Chekina, V. D., & Cherevatskyi, D. Yu. (2018). Smart-promyslovistʹ v epokhu tsyfrovoi ekonomiky: perspektyvy, napriamy i mekhanizmy rozvytku [Smart industry in the era of digital economy: Prospects, directions and mechanisms of development]. Kyiv: NAS of Ukraine, Institute of Industrial Economics. [in Ukrainian].
15. Holovatyi, A. O., Chumak, V. M., Manko, Ye. V., Aulin, V. V., & Kulova, D. O. (2025). Vdoskonalennia matematychnoho modeliuvannia mashynobudivnykh tekhnolohii dlia smart-pidpryiemstv v systemi mashynnoho zoru [Improvement of mathematical modeling of mechanical engineering technologies for smart enterprises in the machine vision system]. Tsentralnoukrainskyi naukovyi visnyk. Tekhnichni nauky, 11(42), Part II, 143–159. https://doi.org/10.32515/2664-262X.2025.11(42).2.143-159 [in Ukrainian].
16. Tryhuba, A., Padyuka, R., Tymochko, V., & Lub, P. (2022). Mathematical model for forecasting product losses in crop production projects. CEUR Workshop Proceedings, 3109, 25–31. https://ceur-ws.org/Vol- 3109/paper4.pdf (Accessed: 15.09.2025).
17. Aulin, V. V., Hryn’kiv, A. V., Holovatyi, A. O., Lysenko, S. V., Holub, D. V., Kuzyk, O. V., & Tykhyi, A. A. (2020). Metodolohichni osnovy proektuvannia ta funktsionuvannia intelektualnykh transportnykh i vyrobnychykh system [Methodological foundations of design and functioning of intelligent transport and production systems]. Kropyvnytskyi: Publisher Lysenko V. F. [in Ukrainian].
18. Tryhuba, I., Tryhuba, A., Hutsol, T., Cieszewska, A., Andrushkiv, O., & Glowacki, S., et al. (2024). Prediction of biogas production volumes from household organic waste based on machine learning. Energies, 17(7), 1786. https://doi.org/10.3390/en17071786
19. Lub, P., Tryhuba, A., Padyuka, R., Berezovetsky, S., & Chubyk, R. (2023). Simulation modeling usage in the information system for the technological systems project management. CEUR Workshop Proceedings, 3453, 139–148. https://ceur-ws.org/Vol-3453/paper13.pdf (Accessed: 15.09.2025).
20. Tryhuba, A., Tryhuba, I., Malanchuk, O., & Marmulyak, A. (2024). A deep neural network model for predicting the competitive score of social projects for community development. CEUR Workshop Proceedings, 3711, 55–74. https://ceur-ws.org/Vol-3711/paper5.pdf (Accessed: 15.09.2025).
Citations
1. Coulibaly A., Toure S., Müller T. Improving cleaning processes in agricultural machinery through optimized water jet parameters. Journal of Agricultural Engineering Research. 2022. № 95(3). С. 255–264. DOI: https://doi.org/10.1016/j.jaer.2022.05.004.
2. Zhang Y., Wang J. Energy-efficient cleaning strategies for off-road agricultural vehicles. Biosystems Engineering. 2018. № 174. С. 30–42. DOI: https://doi.org/10.1016/j.biosystemseng.2018.07.002.
3. Sahu J., Singh R. Integration of smart sensors for automated washing of agricultural equipment under variable field conditions. Smart Agricultural Technology. 2023. № 6. Art. 100202. DOI: https://doi.org/10.1016/j.atech.2023.100202.
4. Zude M., Herold B., Truppel I. Smart cleaning of agricultural equipment: Adaptive control strategies based on sensor feedback. Computers and Electronics in Agriculture. 2019. № 163. Art. 104851. DOI: https://doi.org/10.1016/j.compag.2019.104851.
5. Müller J., Reiter M. Limitations of rule-based cleaning automation in agricultural vehicle maintenance. Precision Agriculture. 2021. № 22(3). С. 456–470. DOI: https://doi.org/10.1007/s11119-020-09755-4.
6. Tao F., Qi Q., Liu A., Kusiak A. Data-driven smart manufacturing. Journal of Manufacturing Systems. 2018. № 48. С. 157–169. DOI: https://doi.org/10.1016/j.jmsy.2018.01.006.
7. Lu Y., Morris K. C., Frechette S. Current standards landscape for smart manufacturing systems. National Institute of Standards and Technology. 2016. URL: https://nvlpubs.nist.gov/nistpubs/ir/2016/nist.ir.8107.pdf (дата звернення: 15.09.2025).
8. Grieves M., Vickers J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In: Kahlen F. J., Flumerfelt S., Alves A. (eds). Transdisciplinary Perspectives on Complex Systems. Cham : Springer, 2017. DOI: https://doi.org/10.1007/978-3-319-38756-7_4.
9. Lee J., Bagheri B., Kao H. A. A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters. 2015. № 3. С. 18–23. DOI: https://doi.org/10.1016/j.mfglet.2014.12.001.
10. Tao F., Zhang H., Liu A., Nee A. Y. C. Digital twin in industry: State-of-the-art. IEEE Transactions on Industrial Informatics. 2019. № 15(4). С. 2405–2415. DOI: https://doi.org/10.1109/TII.2018.2873186.
11. Boschert S., Rosen R. Digital Twin – The Simulation Aspect. In: Hehenberger P., Bradley D. (eds). Mechatronic Futures. Cham : Springer, 2016. DOI: https://doi.org/10.1007/978-3-319-32156-1_5.
12. Verboven P., Defraeye T., Datta A., Nicolai B. Digital twins of food process operations: The next step for food process models? Current Opinion in Food Science. 2020. № 35. С. 1–8. DOI: https://doi.org/10.1016/j.cofs.2020.03.002.
13. Kibulungu J. W., Laseinde O. T. Automatic control system based on Industry 4.0, PLC, and SCADA. In: Intelligent Sustainable Systems. Singapore : Springer, 2023. С. 183–197. DOI: 10.1007/978-981-19-7660-5_16.
14. Вишневський В. П., Вієцька О. В., Гаркушенко О. М., Князєв С. І., Лях О. В., Чекіна В. Д., Череватський Д. Ю. Смарт-промисловість в епоху цифрової економіки: перспективи, напрями і механізми розвитку : монографія. Київ : НАН України, Ін-т економіки промисловості, 2018. 192 с.
15. Головатий А. О., Чумак В. М., Манько Є. В., Аулін В. В., Кульова Д. О. Вдосконалення математичного моделювання машинобудівних технологій для смарт-підприємств в системі машинного зору. Центральноукраїнський науковий вісник. Технічні науки. 2025. Вип. 11(42), ч. ІІ. С. 143–159. DOI: https://doi.org/10.32515/2664-262X.2025.11(42).2.143-159.
16. Tryhuba A., Padyuka R., Tymochko V., Lub P. Mathematical model for forecasting product losses in crop production projects. CEUR Workshop Proceedings. 2022. Vol. 3109. P. 25–31. URL: https://ceur- ws.org/Vol-3109/paper4.pdf (дата звернення: 15.09.2025).
17. Аулін В. В., Гриньків А. В., Головатий А. О., Лисенко С. В., Голуб Д. В., Кузик О. В., Тихий А. А. Методологічні основи проектування та функціонування інтелектуальних транспортних і виробничих систем : монографія. Кропивницький : Видавець Лисенко В. Ф., 2020. 428 с.
8. Tryhuba I., Tryhuba A., Hutsol T., Cieszewska A., Andrushkiv O., Glowacki S. та ін. Prediction of biogas production volumes from household organic waste based on machine learning. Energies. 2024. № 17(7). С. 1786. DOI: https://doi.org/10.3390/en17071786.
19. Lub P., Tryhuba A., Padyuka R., Berezovetsky S., Chubyk R. Simulation modeling usage in the information system for the technological systems project management. CEUR Workshop Proceedings. 2023. Vol. 3453. P. 139–148. URL: ceur-ws.org/Vol-3453/paper13.pdf (дата звернення: 15.09.2025).
20. Tryhuba A., Tryhuba I., Malanchuk O., Marmulyak A. A deep neural network model for predicting the competitive score of social projects for community development. CEUR Workshop Proceedings. 2024. Vol. 3711. P. 55–74. URL: https://ceur-ws.org/Vol-3711/paper5.pdf (дата звернення: 15.09.2025).
Copyright (©) 2025, Orest Filkin, Anatoliy Tryhuba
Digital Twin of a Cyber-Physical System for Washing Agricultural Machinery
About the Authors
Orest Filkin, PhD student in Industrial Mechanical Engineering, National Natural University of Ukraine, Lviv, Ukraine, ORCID: https://orcid.org/0009-0008-3994-9623, e-mail: filkin.orest@gmail.com
Anatoliy Tryhuba, Professor, Doctor of Technical Sciences, Head of the Department of Information Technologies, National Natural University of Ukraine, Lviv, Ukraine, ORCID: https://orcid.org/0000- 0001-8014-5661, e-mail: trianamik@gmail.com
Abstract
Keywords
Full Text:
PDFReferences
1. Coulibaly, A., Toure, S., & Müller, T. (2022). Improving cleaning processes in agricultural machinery through optimized water jet parameters. Journal of Agricultural Engineering Research, 95(3), 255–264. https://doi.org/10.1016/j.jaer.2022.05.004
2. Zhang, Y., & Wang, J. (2018). Energy-efficient cleaning strategies for off-road agricultural vehicles. Biosystems Engineering, 174, 30–42. https://doi.org/10.1016/j.biosystemseng.2018.07.002
3. Sahu, J., & Singh, R. (2023). Integration of smart sensors for automated washing of agricultural equipment under variable field conditions. Smart Agricultural Technology, 6, 100202. https://doi.org/10.1016/j.atech.2023.100202
4. Zude, M., Herold, B., & Truppel, I. (2019). Smart cleaning of agricultural equipment: Adaptive control strategies based on sensor feedback. Computers and Electronics in Agriculture, 163, 104851. https://doi.org/10.1016/j.compag.2019.104851
5. Müller, J., & Reiter, M. (2021). Limitations of rule-based cleaning automation in agricultural vehicle maintenance. Precision Agriculture, 22(3), 456–470. https://doi.org/10.1007/s11119-020-09755-4
6. Tao, F., Qi, Q., Liu, A., & Kusiak, A. (2018). Data-driven smart manufacturing. Journal of Manufacturing Systems, 48, 157–169. https://doi.org/10.1016/j.jmsy.2018.01.006
7. Lu, Y., Morris, K. C., & Frechette, S. (2016). Current standards landscape for smart manufacturing systems. National Institute of Standards and Technology. nvlpubs.nist.gov/nistpubs/ir/2016/nist.ir.8107.pdf (Accessed: 15.09.2025).
8. Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In F. J. Kahlen, S. Flumerfelt, & A. Alves (Eds.), Transdisciplinary perspectives on complex systems. Cham: Springer. https://doi.org/10.1007/978-3-319-38756-7_4
9. Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23. https://doi.org/10.1016/j.mfglet.2014.12.001
10. Tao, F., Zhang, H., Liu, A., & Nee, A. Y. C. (2019). Digital twin in industry: State-of-the-art. IEEE Transactions on Industrial Informatics, 15(4), 2405–2415. https://doi.org/10.1109/TII.2018.2873186
11. Boschert, S., & Rosen, R. (2016). Digital twin – The simulation aspect. In P. Hehenberger & D. Bradley (Eds.), Mechatronic futures. Cham: Springer. https://doi.org/10.1007/978-3-319-32156-1_5
12. Verboven, P., Defraeye, T., Datta, A., & Nicolai, B. (2020). Digital twins of food process operations: The next step for food process models? Current Opinion in Food Science, 35, 1–8. https://doi.org/10.1016/j.cofs.2020.03.002
13. Kibulungu, J. W., & Laseinde, O. T. (2023). Automatic control system based on Industry 4.0, PLC, and SCADA. In Intelligent sustainable systems (pp. 183–197). Singapore: Springer. https://doi.org/10.1007/978-981-19-7660-5_16
14. Vyshnevskyi, V. P., Viietska, O. V., Harkushenko, O. M., Kniaziev, S. I., Liakh, O. V., Chekina, V. D., & Cherevatskyi, D. Yu. (2018). Smart-promyslovistʹ v epokhu tsyfrovoi ekonomiky: perspektyvy, napriamy i mekhanizmy rozvytku [Smart industry in the era of digital economy: Prospects, directions and mechanisms of development]. Kyiv: NAS of Ukraine, Institute of Industrial Economics. [in Ukrainian].
15. Holovatyi, A. O., Chumak, V. M., Manko, Ye. V., Aulin, V. V., & Kulova, D. O. (2025). Vdoskonalennia matematychnoho modeliuvannia mashynobudivnykh tekhnolohii dlia smart-pidpryiemstv v systemi mashynnoho zoru [Improvement of mathematical modeling of mechanical engineering technologies for smart enterprises in the machine vision system]. Tsentralnoukrainskyi naukovyi visnyk. Tekhnichni nauky, 11(42), Part II, 143–159. https://doi.org/10.32515/2664-262X.2025.11(42).2.143-159 [in Ukrainian].
16. Tryhuba, A., Padyuka, R., Tymochko, V., & Lub, P. (2022). Mathematical model for forecasting product losses in crop production projects. CEUR Workshop Proceedings, 3109, 25–31. https://ceur-ws.org/Vol- 3109/paper4.pdf (Accessed: 15.09.2025).
17. Aulin, V. V., Hryn’kiv, A. V., Holovatyi, A. O., Lysenko, S. V., Holub, D. V., Kuzyk, O. V., & Tykhyi, A. A. (2020). Metodolohichni osnovy proektuvannia ta funktsionuvannia intelektualnykh transportnykh i vyrobnychykh system [Methodological foundations of design and functioning of intelligent transport and production systems]. Kropyvnytskyi: Publisher Lysenko V. F. [in Ukrainian].
18. Tryhuba, I., Tryhuba, A., Hutsol, T., Cieszewska, A., Andrushkiv, O., & Glowacki, S., et al. (2024). Prediction of biogas production volumes from household organic waste based on machine learning. Energies, 17(7), 1786. https://doi.org/10.3390/en17071786
19. Lub, P., Tryhuba, A., Padyuka, R., Berezovetsky, S., & Chubyk, R. (2023). Simulation modeling usage in the information system for the technological systems project management. CEUR Workshop Proceedings, 3453, 139–148. https://ceur-ws.org/Vol-3453/paper13.pdf (Accessed: 15.09.2025).
20. Tryhuba, A., Tryhuba, I., Malanchuk, O., & Marmulyak, A. (2024). A deep neural network model for predicting the competitive score of social projects for community development. CEUR Workshop Proceedings, 3711, 55–74. https://ceur-ws.org/Vol-3711/paper5.pdf (Accessed: 15.09.2025).
Citations
1. Coulibaly A., Toure S., Müller T. Improving cleaning processes in agricultural machinery through optimized water jet parameters. Journal of Agricultural Engineering Research. 2022. № 95(3). С. 255–264. DOI: https://doi.org/10.1016/j.jaer.2022.05.004.
2. Zhang Y., Wang J. Energy-efficient cleaning strategies for off-road agricultural vehicles. Biosystems Engineering. 2018. № 174. С. 30–42. DOI: https://doi.org/10.1016/j.biosystemseng.2018.07.002.
3. Sahu J., Singh R. Integration of smart sensors for automated washing of agricultural equipment under variable field conditions. Smart Agricultural Technology. 2023. № 6. Art. 100202. DOI: https://doi.org/10.1016/j.atech.2023.100202.
4. Zude M., Herold B., Truppel I. Smart cleaning of agricultural equipment: Adaptive control strategies based on sensor feedback. Computers and Electronics in Agriculture. 2019. № 163. Art. 104851. DOI: https://doi.org/10.1016/j.compag.2019.104851.
5. Müller J., Reiter M. Limitations of rule-based cleaning automation in agricultural vehicle maintenance. Precision Agriculture. 2021. № 22(3). С. 456–470. DOI: https://doi.org/10.1007/s11119-020-09755-4.
6. Tao F., Qi Q., Liu A., Kusiak A. Data-driven smart manufacturing. Journal of Manufacturing Systems. 2018. № 48. С. 157–169. DOI: https://doi.org/10.1016/j.jmsy.2018.01.006.
7. Lu Y., Morris K. C., Frechette S. Current standards landscape for smart manufacturing systems. National Institute of Standards and Technology. 2016. URL: https://nvlpubs.nist.gov/nistpubs/ir/2016/nist.ir.8107.pdf (дата звернення: 15.09.2025).
8. Grieves M., Vickers J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In: Kahlen F. J., Flumerfelt S., Alves A. (eds). Transdisciplinary Perspectives on Complex Systems. Cham : Springer, 2017. DOI: https://doi.org/10.1007/978-3-319-38756-7_4.
9. Lee J., Bagheri B., Kao H. A. A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters. 2015. № 3. С. 18–23. DOI: https://doi.org/10.1016/j.mfglet.2014.12.001.
10. Tao F., Zhang H., Liu A., Nee A. Y. C. Digital twin in industry: State-of-the-art. IEEE Transactions on Industrial Informatics. 2019. № 15(4). С. 2405–2415. DOI: https://doi.org/10.1109/TII.2018.2873186.
11. Boschert S., Rosen R. Digital Twin – The Simulation Aspect. In: Hehenberger P., Bradley D. (eds). Mechatronic Futures. Cham : Springer, 2016. DOI: https://doi.org/10.1007/978-3-319-32156-1_5.
12. Verboven P., Defraeye T., Datta A., Nicolai B. Digital twins of food process operations: The next step for food process models? Current Opinion in Food Science. 2020. № 35. С. 1–8. DOI: https://doi.org/10.1016/j.cofs.2020.03.002.
13. Kibulungu J. W., Laseinde O. T. Automatic control system based on Industry 4.0, PLC, and SCADA. In: Intelligent Sustainable Systems. Singapore : Springer, 2023. С. 183–197. DOI: 10.1007/978-981-19-7660-5_16.
14. Вишневський В. П., Вієцька О. В., Гаркушенко О. М., Князєв С. І., Лях О. В., Чекіна В. Д., Череватський Д. Ю. Смарт-промисловість в епоху цифрової економіки: перспективи, напрями і механізми розвитку : монографія. Київ : НАН України, Ін-т економіки промисловості, 2018. 192 с.
15. Головатий А. О., Чумак В. М., Манько Є. В., Аулін В. В., Кульова Д. О. Вдосконалення математичного моделювання машинобудівних технологій для смарт-підприємств в системі машинного зору. Центральноукраїнський науковий вісник. Технічні науки. 2025. Вип. 11(42), ч. ІІ. С. 143–159. DOI: https://doi.org/10.32515/2664-262X.2025.11(42).2.143-159.
16. Tryhuba A., Padyuka R., Tymochko V., Lub P. Mathematical model for forecasting product losses in crop production projects. CEUR Workshop Proceedings. 2022. Vol. 3109. P. 25–31. URL: https://ceur- ws.org/Vol-3109/paper4.pdf (дата звернення: 15.09.2025).
17. Аулін В. В., Гриньків А. В., Головатий А. О., Лисенко С. В., Голуб Д. В., Кузик О. В., Тихий А. А. Методологічні основи проектування та функціонування інтелектуальних транспортних і виробничих систем : монографія. Кропивницький : Видавець Лисенко В. Ф., 2020. 428 с.
8. Tryhuba I., Tryhuba A., Hutsol T., Cieszewska A., Andrushkiv O., Glowacki S. та ін. Prediction of biogas production volumes from household organic waste based on machine learning. Energies. 2024. № 17(7). С. 1786. DOI: https://doi.org/10.3390/en17071786.
19. Lub P., Tryhuba A., Padyuka R., Berezovetsky S., Chubyk R. Simulation modeling usage in the information system for the technological systems project management. CEUR Workshop Proceedings. 2023. Vol. 3453. P. 139–148. URL: ceur-ws.org/Vol-3453/paper13.pdf (дата звернення: 15.09.2025).
20. Tryhuba A., Tryhuba I., Malanchuk O., Marmulyak A. A deep neural network model for predicting the competitive score of social projects for community development. CEUR Workshop Proceedings. 2024. Vol. 3711. P. 55–74. URL: https://ceur-ws.org/Vol-3711/paper5.pdf (дата звернення: 15.09.2025).
Copyright (©) 2025, Orest Filkin, Anatoliy Tryhuba