DOI: https://doi.org/10.32515/2664-262X.2025.12(43).1.99-105
Increasing the Reliability of the Ball-Screw Hydraulic Power Steering with an Axial Drive Structure
About the Authors
Anton Aparakin, PhD in Technical Sciences (Candidate of Technical Sciences), Senior Lecturer of the Department of Mechanical Engineering, Mechatronics and Robotics, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-5847-7739, e-mail: anton.aparakin@gmail.com
Kyryl Shcherbyna, Associate Professor, PhD (Candidate of Technical Sciences), Associate Professor of the Department of Mechanical Engineering, Mechatronics and Robotics, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-1665-7686, e-mail: kir2912s@ukr.net
Andriy Kyrychenko, Professor, Doctor of Technical Sciences, Vice-Rector for Scientific and Pedagogical Work, Professor of the Department of Mechanical Engineering, Mechatronics and Robotics, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-4335-9588, e-mail: kyrychenkoam@kntu.kr.ua
Viktor Hodorozha, PhD student in Applied Mechanics, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0009-0002-0815-4031, e-mail: elektromagnetichydrogenerator@gmail.com
Abstract
The purpose of this article is to improve the performance and reliability of ball-screw hydraulic power steering systems (BSHPS), which are widely used in heavy vehicles, buses, and construction machinery. Despite decades of operational success, classical designs of BSHPS have remained largely unchanged since the 1980s and still exhibit technical drawbacks. The main problem addressed is the occurrence of a tipping moment on the piston, caused by the misalignment between the rack transmission plane and the line of action of the hydraulic force resultant. This misalignment leads to excessive wear and a reduction in the efficiency of the steering mechanism. The aim of this study is to develop a new BSHPS design in which the piston and screw axes are aligned to eliminate this drawback and increase the system's efficiency.
The research is based on the principles of theoretical mechanics, materials resistance theory, and hydraulic drive theory. A comprehensive program was developed, including the analysis of load distribution in conventional BSHPS designs, mathematical modeling of efficiency with respect to all frictional resistance forces, and a comparative evaluation of mechanical efficiency losses due to the tipping moment. The proposed design introduces modifications to the gear teeth of the rack and sector, allowing for the installation of the screw axis within the initial plane of the rack transmission. This structural improvement eliminates the misalignment of the piston and screw, thereby reducing parasitic friction forces. Analytical derivations confirmed that this design results in decreased sliding friction, minimized wear, and improved energy transmission efficiency. The load diagrams and derived equations support a quantitative assessment of performance gains over conventional systems.
The key outcome of the research is the elimination of the tipping moment, which reduces the wear of piston and housing surfaces and increases the efficiency of the steering mechanism by 5.9%. This is achieved through the axial alignment of the piston and screw within the rack transmission plane. Furthermore, the design ensures lower friction losses and higher durability. The proposed groove geometry in the rack and sector gears minimizes the contact area and ensures reduced contact stress. These improvements collectively contribute to increased operational reliability and longer service life of the steering system.
Keywords
reliability, design, steering control, hydraulic power steering, motor vehicle
Full Text:
PDF
References
1. Avrunin, H. A., Kyrychenko, I. H., & Samorodov, V. B. (2016). Hidravlichne obladnannia budivelnykh ta dorozhnikh mashyn [Hydraulic equipment of construction and road machines]. Kharkiv: KHNAHU. [in Ukrainian].
2. Bosch Mobility. (n.d.). Servotwin electro-hydraulic steering system. Retrieved May 28, 2025, from https://www.bosch-mobility.com/en/solutions/steering/servotwin/.
3. Nissan Global. (n.d.). Electro-Hydraulic Power Steering System. Retrieved May 28, 2025, from https://www.nissan-global.com/EN/INNOVATION/TECHNOLOGY/ARCHIVE/EHPSS/.
4. Tang, B., Jiang, H., & Gong, X. (2017). Optimal design of variable assist characteristics of electronically controlled hydraulic power steering system based on simulated annealing particle swarm optimization algorithm. International Journal of Vehicle Design, 73(1/2/3), 189–207. https://doi.org/10.1504/IJVD.2017.082596.
5. Barua, R. (2022). Conventional power steering system of vehicle and continuous improvement. Proceedings of the 5th International Conference on Mechanical, Industrial and Energy Engineering (p. 6). Khulna, Bangladesh: RUET.
6. Zhao, W. (2023). Electro hydraulic hybrid power steering system. Vehicle Steer-by-Wire System and Chassis Integration (pp. 165-225). Springer. https://doi.org/10.1007/978-981-19-4250-1_4.
7. Vacca, A., & Franzoni, G. (2001). Power steering and hydraulic systems with priority function. Hydraulic Fluid Power: Fundamentals, Applications, and Circuit Design (pp. 519–538). Wiley. https://doi.org/10.1002/9781119569145.ch22.
8. Avrunin, H. A., et al. (2023). Analiz dynamiky obiemnoho hidropryvoda rulovoho keruvannia samokhidnoho traktornoho shasi [Analysis of volumetric hydraulic drive dynamics of self-propelled tractor chassis steering]. Visnyk Natsionalnoho tekhnichnoho universytetu "KhPI". Seriia: Hidravlichni mashyny ta hidroahrehaty, (1), 35–42. [in Ukrainian]. https://doi.org/10.20998/2411-3441.2023.1.06.
9. Aparakin, A. R., Yeromin, P. M., & Mazhara, V. A. (2024). Synthez skhem navantazhennia sylovykh elementiv kulko-hvyntovoho hidropidsyliuvacha z aksialnoiu strukturou pryvodu [Synthesis of load circuits for power elements of ball-screw power steering with axial structure]. Tsentralnoukrainskyi naukovyi visnyk. Tekhnichni nauky, (9)40(2), 23–31. [in Ukrainian]. https://doi.org/10.32515/2664-262X.2024.9(40).2.23-31
10. Pidhayetskyy, M.M., Aparakin, A.R., Lysenko, O.V., Shcherbyna, K.K. (2023). Kulko-hvyntovyy hidropidsylyuvach [Hydraulic ball-screw power steering] (Patent of Ukraine №154818). State intellectual property department of Ukraine.
11. Aparakin, A. R. (2025). Sposib pidvyshchennia nadiinosti kulko-hvyntovoho hidropidsyliuvacha rulya [Method to improve reliability of ball-screw power steering system]. In XV International Scientific and Practical Conference “Complex Quality Assurance of Technological Processes and Systems” (Vol. 1, p. 219). Chernihiv: NU "Chernihivska Politekhnika". [in Ukrainian].
12. Shtanko, P. K., et al. (Eds.). (2021). Teoretychna mekhanika [Theoretical mechanics]. Zaporizhzhia: NU “Zaporizka politekhnika”. [in Ukrainian].
13. Kaliazin, Yu. V. (2021). Tekhnichna mekhanika: Navchalno-metodychnyi posibnyk do samostiinoi roboty [Technical mechanics: A study-methodical manual]. Poltava: PP “Astraya”. [in Ukrainian].
14. Kolishnichenko, E. V., Mandryka, A. S., & Panchenko, V. O. (2021). Hidravlika, hidro- ta pnevmopryvody: Konspekt lektsii [Hydraulics, hydro- and pneumatic drives: Lecture notes]. Sumy: SumDU. [in Ukrainian].
Citations
1. Аврунін Г. А., Кириченко І. Г., Самородов В. Б. Гідравлічне обладнання будівельних та дорожніх машин : підруч. для студентів ВНЗ. Харків : ХНАДУ, 2016. 438с.
2. Bosch Servotwin electro-hydraulic steering system : веб сайт. URL: https://www.bosch- mobility.com/en/solutions/steering/servotwin/ (дата звернення 28.05.2025).
3. Nissan – Electro-Hydraulic Power Steering System : веб сайт. URL: https://www.nissan- global.com/EN/INNOVATION/TECHNOLOGY/ARCHIVE/EHPSS/ (дата звернення 28.05.2025).
4. Tang B., Jiang H., Gong X., Optimal design of variable assist characteristics of electronically controlled hydraulic power steering system based on simulated annealing particle swarm optimization algorithm. International Journal of Vehicle Design. 2017. Vol. 73 (1/2/3). P. 189-207. DOI: 10.1504/IJVD.2017.082596.
5. Barua R. Conventional power steering system of vehicle and continuous improvement. Proceedings of the 5-th International Conference on Mechanical, Industrial and Energy Engineering, 22-24 December 2022. Khulna, Bangladesh, RUET, 2022. P. 6.
6. Zhao W. Electro Hydraulic Hybrid Power Steering System. Vehicle Steer-by-Wire System and Chassis Integration. Springer, Singapore. 2023. P. 165-225. DOI: 10.1007/978-981-19-4250-1_4.
7. Vacca Andrea, Franzoni Germano. Power Steering and Hydraulic Systems with Priority Function. Hydraulic Fluid Power: Fundamentals, Applications, and Circuit Design. Wiley, 2001. p.519-538. DOI: 10.1002/9781119569145.ch22.
8. Аналіз динаміки об'ємного гідропривода рульового керування самохідного тракторного шасі / Г. А. Аврунін та ін. Вісник Національного технічного університету "ХПІ", Серія: "Гідравлічні машини та гідроагрегати". 2023. Вип.1. С. 35-42. DOI: 10.20998/2411-3441.2023.1.06.
9. Синтез схем навантаження силових елементів кулько-гвинтового гідропідсилювача з аксіальною структурою приводу / Апаракін А.Р., Єрьомін П.М., Мажара В.А. Збірник наукових праць «Центральноукраїнський науковий вісник. Технічні науки». 2024. Вип. №9(40). Ч. 2. С.23-31. DOI: 10.32515/2664-262X.2024.9(40).2.23-31.
10. Кулько-гвинтовий гідропідсилювач : пат. 154818 Україна : МПК B61D5/06. № u 2023 02700 ; заявл. 02.06.2023 ; опубл. 20.12.2023, Бюл. №51.
11. Апаракін А.Р. Спосіб підвищення надійності кулько-гвинтового гідропідсилювача руля. Комплексне забезпечення якості технологічних процесів та систем: зб. матеріалів ХV міжнар. наук.-практ. конф., 22-23 тра. 2025 р. Чернігів: НУ "Чернігівська політехніка", 2025. Т. 1. С. 219.
12. Теоретична механіка: навч. посіб. / Штанько П. К. та ін. ; за ред. П. К. Штанька. Запоріжжя : НУ «Запорізька політехніка», 2021. 464 с.
13. Калязін, Ю. В. Технічна механіка : навч.-метод. посіб. до самост. роб. Полтава : ПП «Астрая», 2021. 204 с.
14. Колісніченко Е. В., Мандрика А. С., Панченко В. О. Гідравліка, гідро- та пневмоприводи : конспект лекцій для студ. спец. 131 "Прикладна механіка" та 133 "Галузеве машинобудування" всіх форм навчання. Суми : СумДУ, 2021. 176 с.
Copyright (©) 2025, Anton Aparakin, Kyryl Shcherbyna, Andriy Kyrychenko, Viktor Hodorozha
Increasing the Reliability of the Ball-Screw Hydraulic Power Steering with an Axial Drive Structure
About the Authors
Anton Aparakin, PhD in Technical Sciences (Candidate of Technical Sciences), Senior Lecturer of the Department of Mechanical Engineering, Mechatronics and Robotics, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-5847-7739, e-mail: anton.aparakin@gmail.com
Kyryl Shcherbyna, Associate Professor, PhD (Candidate of Technical Sciences), Associate Professor of the Department of Mechanical Engineering, Mechatronics and Robotics, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-1665-7686, e-mail: kir2912s@ukr.net
Andriy Kyrychenko, Professor, Doctor of Technical Sciences, Vice-Rector for Scientific and Pedagogical Work, Professor of the Department of Mechanical Engineering, Mechatronics and Robotics, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-4335-9588, e-mail: kyrychenkoam@kntu.kr.ua
Viktor Hodorozha, PhD student in Applied Mechanics, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0009-0002-0815-4031, e-mail: elektromagnetichydrogenerator@gmail.com
Abstract
Keywords
Full Text:
PDFReferences
1. Avrunin, H. A., Kyrychenko, I. H., & Samorodov, V. B. (2016). Hidravlichne obladnannia budivelnykh ta dorozhnikh mashyn [Hydraulic equipment of construction and road machines]. Kharkiv: KHNAHU. [in Ukrainian].
2. Bosch Mobility. (n.d.). Servotwin electro-hydraulic steering system. Retrieved May 28, 2025, from https://www.bosch-mobility.com/en/solutions/steering/servotwin/.
3. Nissan Global. (n.d.). Electro-Hydraulic Power Steering System. Retrieved May 28, 2025, from https://www.nissan-global.com/EN/INNOVATION/TECHNOLOGY/ARCHIVE/EHPSS/.
4. Tang, B., Jiang, H., & Gong, X. (2017). Optimal design of variable assist characteristics of electronically controlled hydraulic power steering system based on simulated annealing particle swarm optimization algorithm. International Journal of Vehicle Design, 73(1/2/3), 189–207. https://doi.org/10.1504/IJVD.2017.082596.
5. Barua, R. (2022). Conventional power steering system of vehicle and continuous improvement. Proceedings of the 5th International Conference on Mechanical, Industrial and Energy Engineering (p. 6). Khulna, Bangladesh: RUET.
6. Zhao, W. (2023). Electro hydraulic hybrid power steering system. Vehicle Steer-by-Wire System and Chassis Integration (pp. 165-225). Springer. https://doi.org/10.1007/978-981-19-4250-1_4.
7. Vacca, A., & Franzoni, G. (2001). Power steering and hydraulic systems with priority function. Hydraulic Fluid Power: Fundamentals, Applications, and Circuit Design (pp. 519–538). Wiley. https://doi.org/10.1002/9781119569145.ch22.
8. Avrunin, H. A., et al. (2023). Analiz dynamiky obiemnoho hidropryvoda rulovoho keruvannia samokhidnoho traktornoho shasi [Analysis of volumetric hydraulic drive dynamics of self-propelled tractor chassis steering]. Visnyk Natsionalnoho tekhnichnoho universytetu "KhPI". Seriia: Hidravlichni mashyny ta hidroahrehaty, (1), 35–42. [in Ukrainian]. https://doi.org/10.20998/2411-3441.2023.1.06.
9. Aparakin, A. R., Yeromin, P. M., & Mazhara, V. A. (2024). Synthez skhem navantazhennia sylovykh elementiv kulko-hvyntovoho hidropidsyliuvacha z aksialnoiu strukturou pryvodu [Synthesis of load circuits for power elements of ball-screw power steering with axial structure]. Tsentralnoukrainskyi naukovyi visnyk. Tekhnichni nauky, (9)40(2), 23–31. [in Ukrainian]. https://doi.org/10.32515/2664-262X.2024.9(40).2.23-31
10. Pidhayetskyy, M.M., Aparakin, A.R., Lysenko, O.V., Shcherbyna, K.K. (2023). Kulko-hvyntovyy hidropidsylyuvach [Hydraulic ball-screw power steering] (Patent of Ukraine №154818). State intellectual property department of Ukraine.
11. Aparakin, A. R. (2025). Sposib pidvyshchennia nadiinosti kulko-hvyntovoho hidropidsyliuvacha rulya [Method to improve reliability of ball-screw power steering system]. In XV International Scientific and Practical Conference “Complex Quality Assurance of Technological Processes and Systems” (Vol. 1, p. 219). Chernihiv: NU "Chernihivska Politekhnika". [in Ukrainian].
12. Shtanko, P. K., et al. (Eds.). (2021). Teoretychna mekhanika [Theoretical mechanics]. Zaporizhzhia: NU “Zaporizka politekhnika”. [in Ukrainian].
13. Kaliazin, Yu. V. (2021). Tekhnichna mekhanika: Navchalno-metodychnyi posibnyk do samostiinoi roboty [Technical mechanics: A study-methodical manual]. Poltava: PP “Astraya”. [in Ukrainian].
14. Kolishnichenko, E. V., Mandryka, A. S., & Panchenko, V. O. (2021). Hidravlika, hidro- ta pnevmopryvody: Konspekt lektsii [Hydraulics, hydro- and pneumatic drives: Lecture notes]. Sumy: SumDU. [in Ukrainian].
Citations
1. Аврунін Г. А., Кириченко І. Г., Самородов В. Б. Гідравлічне обладнання будівельних та дорожніх машин : підруч. для студентів ВНЗ. Харків : ХНАДУ, 2016. 438с.
2. Bosch Servotwin electro-hydraulic steering system : веб сайт. URL: https://www.bosch- mobility.com/en/solutions/steering/servotwin/ (дата звернення 28.05.2025).
3. Nissan – Electro-Hydraulic Power Steering System : веб сайт. URL: https://www.nissan- global.com/EN/INNOVATION/TECHNOLOGY/ARCHIVE/EHPSS/ (дата звернення 28.05.2025).
4. Tang B., Jiang H., Gong X., Optimal design of variable assist characteristics of electronically controlled hydraulic power steering system based on simulated annealing particle swarm optimization algorithm. International Journal of Vehicle Design. 2017. Vol. 73 (1/2/3). P. 189-207. DOI: 10.1504/IJVD.2017.082596.
5. Barua R. Conventional power steering system of vehicle and continuous improvement. Proceedings of the 5-th International Conference on Mechanical, Industrial and Energy Engineering, 22-24 December 2022. Khulna, Bangladesh, RUET, 2022. P. 6.
6. Zhao W. Electro Hydraulic Hybrid Power Steering System. Vehicle Steer-by-Wire System and Chassis Integration. Springer, Singapore. 2023. P. 165-225. DOI: 10.1007/978-981-19-4250-1_4.
7. Vacca Andrea, Franzoni Germano. Power Steering and Hydraulic Systems with Priority Function. Hydraulic Fluid Power: Fundamentals, Applications, and Circuit Design. Wiley, 2001. p.519-538. DOI: 10.1002/9781119569145.ch22.
8. Аналіз динаміки об'ємного гідропривода рульового керування самохідного тракторного шасі / Г. А. Аврунін та ін. Вісник Національного технічного університету "ХПІ", Серія: "Гідравлічні машини та гідроагрегати". 2023. Вип.1. С. 35-42. DOI: 10.20998/2411-3441.2023.1.06.
9. Синтез схем навантаження силових елементів кулько-гвинтового гідропідсилювача з аксіальною структурою приводу / Апаракін А.Р., Єрьомін П.М., Мажара В.А. Збірник наукових праць «Центральноукраїнський науковий вісник. Технічні науки». 2024. Вип. №9(40). Ч. 2. С.23-31. DOI: 10.32515/2664-262X.2024.9(40).2.23-31.
10. Кулько-гвинтовий гідропідсилювач : пат. 154818 Україна : МПК B61D5/06. № u 2023 02700 ; заявл. 02.06.2023 ; опубл. 20.12.2023, Бюл. №51.
11. Апаракін А.Р. Спосіб підвищення надійності кулько-гвинтового гідропідсилювача руля. Комплексне забезпечення якості технологічних процесів та систем: зб. матеріалів ХV міжнар. наук.-практ. конф., 22-23 тра. 2025 р. Чернігів: НУ "Чернігівська політехніка", 2025. Т. 1. С. 219.
12. Теоретична механіка: навч. посіб. / Штанько П. К. та ін. ; за ред. П. К. Штанька. Запоріжжя : НУ «Запорізька політехніка», 2021. 464 с.
13. Калязін, Ю. В. Технічна механіка : навч.-метод. посіб. до самост. роб. Полтава : ПП «Астрая», 2021. 204 с.
14. Колісніченко Е. В., Мандрика А. С., Панченко В. О. Гідравліка, гідро- та пневмоприводи : конспект лекцій для студ. спец. 131 "Прикладна механіка" та 133 "Галузеве машинобудування" всіх форм навчання. Суми : СумДУ, 2021. 176 с.
Copyright (©) 2025, Anton Aparakin, Kyryl Shcherbyna, Andriy Kyrychenko, Viktor Hodorozha