DOI: https://doi.org/10.32515/2664-262X.2025.12(43).1.133-146
Simulation of the Grain Destruction Process by Impact Cutting
About the Authors
Elchyn Aliiev, Senior Researcher, Doctor of Technical Sciences, Professor of the Department of Engineering of Technical Systems, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID: https://orcid.org/0000-0003-4006-8803, e-mail: aliev@meta.ua
Illia Bilous, PhD student in Industrial Mechanical Engineering, Assistant of the Department of Engineering of Technical Systems, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID: https://orcid.org/0000-0001-9635-6631, e-mail: bilous.i.m@dsau.dp.ua
Abstract
The aim of the research is to perform numerical modeling of the concentrated feed grinding process and to determine the influence of the physical and mechanical properties of the grain, its orientation, and the parameters of the disc crusher on the fracture force during impact cutting.
Considering the specific design of the new working unit of the disc crusher with impact inserts, the influence of three key factors – distance between impact inserts (l), angle between them (α), and the linear velocity of insert motion (V) – was investigated through numerical simulation of the grain fracture process for corn, wheat, and barley using the discrete element method (DEM) in the Simcenter STAR-CCM+ environment. The patterns of fracture force for corn, wheat, and barley grains under three orientations during impact cutting were established depending on the distance between inserts, the angle between them, and the linear velocity.
The identified patterns provide a quantitative assessment and a deeper physical understanding of the grain shell destruction processes under impact cutting conditions. This serves as a basis for optimizing the design parameters of the crusher to enhance the efficiency and energy savings in processing different types of grain materials.
To comprehensively evaluate the grain grinding process, an integral efficiency criterion was proposed, aiming to minimize fracture force at maximum distance between inserts and minimum insert speed.
This allows for high process productivity while simultaneously reducing kinetic energy consumption. Rational grinding parameters were established for the main cereal crops – corn, wheat, and barley.
The analysis of the obtained results confirms that the process parameters (distance between inserts l = 1.68–1.79 mm, installation angle β = 21.8–25.3°, insert velocity V = 4.72–5.86 m/s, disk rotation speed n = 1503–1865 rpm, modular clearance δ = 0.68–0.79 mm) reflect the physical and mechanical characteristics of each crop.
Keywords
disc crusher, impact inserts, discrete element method (DEM), Simcenter STAR-CCM+, impact cutting, grain destruction, design parameters, optimization, energy efficiency
Full Text:
PDF
References
1. Gao, P., Tian, S., Xue, X., & Lu, J. (2024). Determination methods and influencing factors of grain mechanical properties. Journal of Food Quality, 1–12. https://doi.org/10.1155/2024/3407485.
2. Osokina, N. M., Kostetska, K. V., & Herasymchuk, O. P. (2023). Physical and mechanical properties and quality indicators of grain of cereal cultures. Collection of Scientific Papers of Uman NUH, 103(1), 292– 307 [in Ukrainian]. https://doi.org/10.32782/2415-8240-2023-103-1-292-307.
3. Tavakoli, M., Tavakoli, H., Rajabipour, A., Ahmadi, H., & Gharib-Zahedi, S. M. T. (2009). Moisture- dependent physical properties of barley grains. International Journal of Agricultural and Biological Engineering, 2(4), 84–91. https://doi.org/10.3965/j.issn.1934-6344.2009.04.084-091
4. Sologubik, C., Campañone, L., Pagano, A., & Gely, M. (2012). Effect of moisture content on some physical properties of barley. Industrial Crops and Products, 43, 762–767. https://doi.org/10.1016/j.indcrop.2012.08.019.
5. Firatligil-Durmuş, E., Sýkorová, A., Šárka, E., Bubník, Z., Schejbal, M., & Příhoda, J. (2010). Geometric parameters of wheat grain determined by image analysis and FEM approach. Cereal Research Communications, 38(1), 122–133. https://doi.org/10.1556/crc.38.2010.1.13.
6. Seifi, M. R., & Alimardani, R. (2010). The moisture content effect on some physical and mechanical properties of corn (Sc 704). Journal of Agricultural Science, 2(4), 125–134. https://doi.org/10.5539/jas.v2n4p125.
7. Coşkun, M. B., Yalçın, İ., & Özarslan, C. (2005). Physical properties of sweet corn seed (Zea mays saccharata Sturt.). Journal of Food Engineering, 74(4), 523–528. https://doi.org/10.1016/j.jfoodeng.2005.03.039.
8. Molenda, M., & Stasiak, M. (2002). Determination of the elastic constants of cereal grains in uniaxial compression test. International Agrophysics, 16(1), 61–65.
9. Zewdu, A., & Solomon, W. (2006). Moisture-dependent physical properties of TEF seed. Biosystems Engineering, 96(1), 57–63. https://doi.org/10.1016/j.biosystemseng.2006.09.008.
10. Dudin, V. Yu., & Bilous, I. M. (2024). Study of the process of corn grain destruction using digital models. Central Ukrainian Scientific Bulletin. Technical Sciences, 10(41/2), 123–130 [in Ukrainian]. https://doi.org/10.32515/2664-262X.2024.10(41).2.123-130.
11. Kubík, Ľ., Božiková, M., & Kažimírová, V. (2021). Mechanical properties of wheat grains at compression. Acta Technologica Agriculturae, 24(4), 202–208. https://doi.org/10.2478/ata-2021-0033
12. Aliiev, E. B. (2023). Numerical modeling of agro-industrial production processes: Textbook. Kyiv: Agrarian Science [in Ukrainian]. https://doi.org/10.31073/978-966-540-584-9.
13. Zhong, J., Tao, L., Li, S., Zhang, B., Wang, J., & He, Y. (2022). Determination and interpretation of parameters of double-bud sugarcane model based on discrete element. Computers and Electronics in Agriculture, 203, 107428. https://doi.org/10.1016/j.compag.2022.107428.
14. Liu, Z., Ma, H., & Zhao, Y. (2021). Comparative study of discrete element modeling of tablets using multi- spheres, multi-super-ellipsoids, and polyhedrons. Powder Technology, 390, 34–49. https://doi.org/10.1016/j.powtec.2021.05.065.
15. Kruggel-Emden, H., Rickelt, S., Wirtz, S., & Scherer, V. (2008). A study on the validity of the multi-sphere Discrete Element Method. Powder Technology, 188(2), 153–165. https://doi.org/10.1016/j.powtec.2008.04.037.
16. Wiącek, J., Molenda, M., Horabik, J., & Ooi, J. Y. (2012). Influence of grain shape and intergranular friction on material behavior in uniaxial compression: experimental and DEM modeling. Powder Technology, 217, 435–442. https://doi.org/10.1016/j.powtec.2011.10.060.
17. Markauskas, D., & Kačianauskas, R. (2010). Investigation of rice grain flow by multi-sphere particle model with rolling resistance. Granular Matter, 13(2), 143–148. https://doi.org/10.1007/s10035-010-0196-5
18. Boac, J. M., Casada, M. E., Maghirang, R. G., & Harner, J. P. (2010). Material and interaction properties of selected grains and oilseeds for modeling discrete particles. Transactions of the ASABE, 53(4), 1201–1216. https://doi.org/10.13031/2013.32577.
19. Basiouny, M., & El-Yamani, A. (2016). Performance evaluation of two different hammer mills for grinding corn cobs. Journal of Soil Sciences and Agricultural Engineering, 7(1), 77–87. https://doi.org/10.21608/jssae.2016.39322.
20. Dibner, J., & Richards, J. (2004). The digestive system: Challenges and opportunities. The Journal of Applied Poultry Research, 13(1), 86–93. https://doi.org/10.1093/japr/13.1.86
21. Wang, L., Zhou, W., Ding, Z., Li, X., & Zhang, C. (2015). Experimental determination of parameter effects on the coefficient of restitution of differently shaped maize in three-dimensions. Powder Technology, 284, 187–194. https://doi.org/10.1016/j.powtec.2015.06.042.
22. Markauskas, D., Ramírez-Gómez, Á., Kačianauskas, R., & Zdancevičius, E. (2015). Maize grain shape approaches for DEM modelling. Computers and Electronics in Agriculture, 118, 247–258. https://doi.org/10.1016/j.compag.2015.09.004.
23. Ramaj, I., Romuli, S., Schock, S., & Müller, J. (2024). Discrete element modelling of bulk behaviour of wheat (Triticum aestivum L.) cv. ‘Pionier’ during compressive loading. Biosystems Engineering, 242, 123–139. https://doi.org/10.1016/j.biosystemseng.2024.04.005.
24. Molenda, M., & Horabik, J. (2005). Mechanical properties of granular agro-materials and food powders for industrial practice. In J. Horabik & J. Laskowski (Eds.), Characterization of mechanical properties of particulate solids for storage and handling (p. 146). Lublin: Institute of Agrophysics PAS.
25. AZoM. (n.d.). AISI 1026 Carbon Steel (UNS G10260). Retrieved October 5, 2022, from https://www.azom.com/article.aspx?ArticleID=6583.
26. Boac, J., Casada, M., Pordesimo, L., Petingco, M., Maghirang, R., & Harner, J. (2023). Evaluation of particle models of corn kernels for discrete element method simulation of shelled corn mass flow. Smart Agricultural Technology, 4, 100197. https://doi.org/10.1016/j.atech.2023.100197.
27. Wang, X., Wu, W., & Jia, H. (2023). Calibration of discrete element parameters for simulating wheat crushing. Food Science & Nutrition, 11(12), 7751–7764. https://doi.org/10.1002/fsn3.3693.
Citations
1. Gao P., Tian S., Xue X., Lu J. Determination methods and influencing factors of grain mechanical properties. Journal of Food Quality. 2024. P. 1–12. DOI: 10.1155/2024/3407485.
2. Осокіна Н. М., Костецька К. В., Герасимчук О. П. Physical and mechanical properties and quality indicators of grain of cereal cultures. Збірник наукових праць Уманського НУС. 2023. Т. 103, № 1. С. 292–307. DOI: 10.32782/2415-8240-2023-103-1-292-307.
3. Tavakoli M., Tavakoli H., Rajabipour A., Ahmadi H., Gharib-Zahedi S. M. T. Moisture-dependent physical properties of barley grains. International Journal of Agricultural and Biological Engineering. 2009. Vol. 2, № 4. P. 84–91. DOI: 10.3965/j.issn.1934-6344.2009.04.084-091.
4. Sologubik C., Campañone L., Pagano A., Gely M. Effect of moisture content on some physical properties of barley. Industrial Crops and Products. 2012. Vol. 43. P. 762–767. DOI: 10.1016/j.indcrop.2012.08.019.
5. Firatligil-Durmuş E., Sýkorová A., Šárka E., Bubník Z., Schejbal M., Příhoda J. Geometric parameters of wheat grain determined by image analysis and FEM approach. Cereal Research Communications. 2010. Vol. 38, № 1. P. 122–133. DOI: 10.1556/crc.38.2010.1.13.
6. Seifi M. R., Alimardani R. The moisture content effect on some physical and mechanical properties of corn (Sc 704). Journal of Agricultural Science. 2010. Vol. 2, № 4. P. 125–134. DOI: 10.5539/jas.v2n4p125.
7. Coşkun M. B., Yalçın İ., Özarslan C. Physical properties of sweet corn seed (Zea mays saccharata Sturt.). Journal of Food Engineering. 2005. Vol. 74, № 4. P. 523–528. DOI: 10.1016/j.jfoodeng.2005.03.039.
8. Molenda M., Stasiak M. Determination of the elastic constants of cereal grains in uniaxial compression test. International Agrophysics. 2002. Vol. 16, № 1. P. 61–65.
9. Zewdu A., Solomon W. Moisture-dependent physical properties of TEF seed. Biosystems Engineering. 2006. Vol. 96, № 1. P. 57–63. DOI: 10.1016/j.biosystemseng.2006.09.008.
10. Дудін В. Ю., Білоус І. М. Дослідження процесу руйнування зерна кукурудзи з використанням цифрових моделей. Центральноукраїнський науковий вісник. Технічні науки. 2024. Т. 10, № 41, ч. 2. С. 123–130. DOI: 10.32515/2664-262X.2024.10(41).2.123-130.
11. Kubík Ľ., Božiková M., Kažimírová V. Mechanical properties of wheat grains at compression. Acta Technologica Agriculturae. 2021. Vol. 24, № 4. P. 202–208. DOI: 10.2478/ata-2021-0033.
12. Алієв Е. Б. Чисельне моделювання процесів агропромислового виробництва: підручник. Київ: Аграрна наука, 2023. 340 с. DOI: 10.31073/978-966-540-584-9.
13. Zhong J., Tao L., Li S., Zhang B., Wang J., He Y. Determination and interpretation of parameters of double- bud sugarcane model based on discrete element. Computers and Electronics in Agriculture. 2022. Vol. 203. P. 107428. DOI: 10.1016/j.compag.2022.107428.
14. Liu Z., Ma H., Zhao Y. Comparative study of discrete element modeling of tablets using multi-spheres, multi-super-ellipsoids, and polyhedrons. Powder Technology. 2021. Vol. 390. P. 34–49. DOI: 10.1016/j.powtec.2021.05.065.
15. Kruggel-Emden H., Rickelt S., Wirtz S., Scherer V. A study on the validity of the multi-sphere Discrete Element Method. Powder Technology. 2008. Vol. 188, № 2. P. 153–165. DOI: 10.1016/j.powtec.2008.04.037.
16. Wiącek J., Molenda M., Horabik J., Ooi J. Y. Influence of grain shape and intergranular friction on material behavior in uniaxial compression: experimental and DEM modeling. Powder Technology. 2012. Vol. 217. P. 435–442. DOI: 10.1016/j.powtec.2011.10.060.
17. Markauskas D., Kačianauskas R. Investigation of rice grain flow by multi-sphere particle model with rolling resistance. Granular Matter. 2010. Vol. 13, № 2. P. 143–148. DOI: 10.1007/s10035-010-0196-5.
18. Boac J. M., Casada M. E., Maghirang R. G., Harner J. P. Material and interaction properties of selected grains and oilseeds for modeling discrete particles. Transactions of the ASABE. 2010. Vol. 53, № 4. P. 1201–1216. DOI: 10.13031/2013.32577.
19. Basiouny M., El-Yamani A. Performance evaluation of two different hammer mills for grinding corn cobs. Journal of Soil Sciences and Agricultural Engineering. 2016. Vol. 7, № 1. P. 77–87. DOI: 10.21608/jssae.2016.39322.
20. Dibner J., Richards J. The digestive system: challenges and opportunities. The Journal of Applied Poultry Research. 2004. Vol. 13, № 1. P. 86–93. DOI: 10.1093/japr/13.1.86.
21. Wang L., Zhou W., Ding Z., Li X., Zhang C. Experimental determination of parameter effects on the coefficient of restitution of differently shaped maize in three-dimensions. Powder Technology. 2015. Vol. 284. P. 187–194. DOI: 10.1016/j.powtec.2015.06.042.
22. Markauskas D., Ramírez-Gómez Á., Kačianauskas R., Zdancevičius E. Maize grain shape approaches for DEM modelling. Computers and Electronics in Agriculture. 2015. Vol. 118. P. 247–258. DOI: 10.1016/j.compag.2015.09.004.
23. Ramaj I., Romuli S., Schock S., Müller J. Discrete element modelling of bulk behaviour of wheat (Triticum aestivum L.) cv. ‘Pionier’ during compressive loading. Biosystems Engineering. 2024. Vol. 242. P. 123–139. DOI: 10.1016/j.biosystemseng.2024.04.005.
24. Molenda M., Horabik J. Mechanical properties of granular agro-materials and food powders for industrial practice. In: Characterization of mechanical properties of particulate solids for storage and handling. Eds. Horabik J., Laskowski J. Lublin : Institute of Agrophysics PAS, 2005. 146 p.
25. AZoM. AISI 1026 Carbon Steel (UNS G10260). URL: https://www.azom.com/article.aspx?ArticleID=6583 (дата звернення: 05.10.2022).
26. Boac J., Casada M., Pordesimo L., Petingco M., Maghirang R., Harner J. Evaluation of particle models of corn kernels for discrete element method simulation of shelled corn mass flow. Smart Agricultural Technology. 2023. Vol. 4. P. 100197. DOI: 10.1016/j.atech.2023.100197.
27. Wang X., Wu W., Jia H. Calibration of discrete element parameters for simulating wheat crushing. Food Science & Nutrition. 2023. Vol. 11, № 12. P. 7751–7764. DOI: 10.1002/fsn3.3693.
Copyright (©) 2025, Elchyn Aliiev, Illia Bilous
Simulation of the Grain Destruction Process by Impact Cutting
About the Authors
Elchyn Aliiev, Senior Researcher, Doctor of Technical Sciences, Professor of the Department of Engineering of Technical Systems, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID: https://orcid.org/0000-0003-4006-8803, e-mail: aliev@meta.ua
Illia Bilous, PhD student in Industrial Mechanical Engineering, Assistant of the Department of Engineering of Technical Systems, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID: https://orcid.org/0000-0001-9635-6631, e-mail: bilous.i.m@dsau.dp.ua
Abstract
Keywords
Full Text:
PDFReferences
1. Gao, P., Tian, S., Xue, X., & Lu, J. (2024). Determination methods and influencing factors of grain mechanical properties. Journal of Food Quality, 1–12. https://doi.org/10.1155/2024/3407485.
2. Osokina, N. M., Kostetska, K. V., & Herasymchuk, O. P. (2023). Physical and mechanical properties and quality indicators of grain of cereal cultures. Collection of Scientific Papers of Uman NUH, 103(1), 292– 307 [in Ukrainian]. https://doi.org/10.32782/2415-8240-2023-103-1-292-307.
3. Tavakoli, M., Tavakoli, H., Rajabipour, A., Ahmadi, H., & Gharib-Zahedi, S. M. T. (2009). Moisture- dependent physical properties of barley grains. International Journal of Agricultural and Biological Engineering, 2(4), 84–91. https://doi.org/10.3965/j.issn.1934-6344.2009.04.084-091
4. Sologubik, C., Campañone, L., Pagano, A., & Gely, M. (2012). Effect of moisture content on some physical properties of barley. Industrial Crops and Products, 43, 762–767. https://doi.org/10.1016/j.indcrop.2012.08.019.
5. Firatligil-Durmuş, E., Sýkorová, A., Šárka, E., Bubník, Z., Schejbal, M., & Příhoda, J. (2010). Geometric parameters of wheat grain determined by image analysis and FEM approach. Cereal Research Communications, 38(1), 122–133. https://doi.org/10.1556/crc.38.2010.1.13.
6. Seifi, M. R., & Alimardani, R. (2010). The moisture content effect on some physical and mechanical properties of corn (Sc 704). Journal of Agricultural Science, 2(4), 125–134. https://doi.org/10.5539/jas.v2n4p125.
7. Coşkun, M. B., Yalçın, İ., & Özarslan, C. (2005). Physical properties of sweet corn seed (Zea mays saccharata Sturt.). Journal of Food Engineering, 74(4), 523–528. https://doi.org/10.1016/j.jfoodeng.2005.03.039.
8. Molenda, M., & Stasiak, M. (2002). Determination of the elastic constants of cereal grains in uniaxial compression test. International Agrophysics, 16(1), 61–65.
9. Zewdu, A., & Solomon, W. (2006). Moisture-dependent physical properties of TEF seed. Biosystems Engineering, 96(1), 57–63. https://doi.org/10.1016/j.biosystemseng.2006.09.008.
10. Dudin, V. Yu., & Bilous, I. M. (2024). Study of the process of corn grain destruction using digital models. Central Ukrainian Scientific Bulletin. Technical Sciences, 10(41/2), 123–130 [in Ukrainian]. https://doi.org/10.32515/2664-262X.2024.10(41).2.123-130.
11. Kubík, Ľ., Božiková, M., & Kažimírová, V. (2021). Mechanical properties of wheat grains at compression. Acta Technologica Agriculturae, 24(4), 202–208. https://doi.org/10.2478/ata-2021-0033
12. Aliiev, E. B. (2023). Numerical modeling of agro-industrial production processes: Textbook. Kyiv: Agrarian Science [in Ukrainian]. https://doi.org/10.31073/978-966-540-584-9.
13. Zhong, J., Tao, L., Li, S., Zhang, B., Wang, J., & He, Y. (2022). Determination and interpretation of parameters of double-bud sugarcane model based on discrete element. Computers and Electronics in Agriculture, 203, 107428. https://doi.org/10.1016/j.compag.2022.107428.
14. Liu, Z., Ma, H., & Zhao, Y. (2021). Comparative study of discrete element modeling of tablets using multi- spheres, multi-super-ellipsoids, and polyhedrons. Powder Technology, 390, 34–49. https://doi.org/10.1016/j.powtec.2021.05.065.
15. Kruggel-Emden, H., Rickelt, S., Wirtz, S., & Scherer, V. (2008). A study on the validity of the multi-sphere Discrete Element Method. Powder Technology, 188(2), 153–165. https://doi.org/10.1016/j.powtec.2008.04.037.
16. Wiącek, J., Molenda, M., Horabik, J., & Ooi, J. Y. (2012). Influence of grain shape and intergranular friction on material behavior in uniaxial compression: experimental and DEM modeling. Powder Technology, 217, 435–442. https://doi.org/10.1016/j.powtec.2011.10.060.
17. Markauskas, D., & Kačianauskas, R. (2010). Investigation of rice grain flow by multi-sphere particle model with rolling resistance. Granular Matter, 13(2), 143–148. https://doi.org/10.1007/s10035-010-0196-5
18. Boac, J. M., Casada, M. E., Maghirang, R. G., & Harner, J. P. (2010). Material and interaction properties of selected grains and oilseeds for modeling discrete particles. Transactions of the ASABE, 53(4), 1201–1216. https://doi.org/10.13031/2013.32577.
19. Basiouny, M., & El-Yamani, A. (2016). Performance evaluation of two different hammer mills for grinding corn cobs. Journal of Soil Sciences and Agricultural Engineering, 7(1), 77–87. https://doi.org/10.21608/jssae.2016.39322.
20. Dibner, J., & Richards, J. (2004). The digestive system: Challenges and opportunities. The Journal of Applied Poultry Research, 13(1), 86–93. https://doi.org/10.1093/japr/13.1.86
21. Wang, L., Zhou, W., Ding, Z., Li, X., & Zhang, C. (2015). Experimental determination of parameter effects on the coefficient of restitution of differently shaped maize in three-dimensions. Powder Technology, 284, 187–194. https://doi.org/10.1016/j.powtec.2015.06.042.
22. Markauskas, D., Ramírez-Gómez, Á., Kačianauskas, R., & Zdancevičius, E. (2015). Maize grain shape approaches for DEM modelling. Computers and Electronics in Agriculture, 118, 247–258. https://doi.org/10.1016/j.compag.2015.09.004.
23. Ramaj, I., Romuli, S., Schock, S., & Müller, J. (2024). Discrete element modelling of bulk behaviour of wheat (Triticum aestivum L.) cv. ‘Pionier’ during compressive loading. Biosystems Engineering, 242, 123–139. https://doi.org/10.1016/j.biosystemseng.2024.04.005.
24. Molenda, M., & Horabik, J. (2005). Mechanical properties of granular agro-materials and food powders for industrial practice. In J. Horabik & J. Laskowski (Eds.), Characterization of mechanical properties of particulate solids for storage and handling (p. 146). Lublin: Institute of Agrophysics PAS.
25. AZoM. (n.d.). AISI 1026 Carbon Steel (UNS G10260). Retrieved October 5, 2022, from https://www.azom.com/article.aspx?ArticleID=6583.
26. Boac, J., Casada, M., Pordesimo, L., Petingco, M., Maghirang, R., & Harner, J. (2023). Evaluation of particle models of corn kernels for discrete element method simulation of shelled corn mass flow. Smart Agricultural Technology, 4, 100197. https://doi.org/10.1016/j.atech.2023.100197.
27. Wang, X., Wu, W., & Jia, H. (2023). Calibration of discrete element parameters for simulating wheat crushing. Food Science & Nutrition, 11(12), 7751–7764. https://doi.org/10.1002/fsn3.3693.
Citations
1. Gao P., Tian S., Xue X., Lu J. Determination methods and influencing factors of grain mechanical properties. Journal of Food Quality. 2024. P. 1–12. DOI: 10.1155/2024/3407485.
2. Осокіна Н. М., Костецька К. В., Герасимчук О. П. Physical and mechanical properties and quality indicators of grain of cereal cultures. Збірник наукових праць Уманського НУС. 2023. Т. 103, № 1. С. 292–307. DOI: 10.32782/2415-8240-2023-103-1-292-307.
3. Tavakoli M., Tavakoli H., Rajabipour A., Ahmadi H., Gharib-Zahedi S. M. T. Moisture-dependent physical properties of barley grains. International Journal of Agricultural and Biological Engineering. 2009. Vol. 2, № 4. P. 84–91. DOI: 10.3965/j.issn.1934-6344.2009.04.084-091.
4. Sologubik C., Campañone L., Pagano A., Gely M. Effect of moisture content on some physical properties of barley. Industrial Crops and Products. 2012. Vol. 43. P. 762–767. DOI: 10.1016/j.indcrop.2012.08.019.
5. Firatligil-Durmuş E., Sýkorová A., Šárka E., Bubník Z., Schejbal M., Příhoda J. Geometric parameters of wheat grain determined by image analysis and FEM approach. Cereal Research Communications. 2010. Vol. 38, № 1. P. 122–133. DOI: 10.1556/crc.38.2010.1.13.
6. Seifi M. R., Alimardani R. The moisture content effect on some physical and mechanical properties of corn (Sc 704). Journal of Agricultural Science. 2010. Vol. 2, № 4. P. 125–134. DOI: 10.5539/jas.v2n4p125.
7. Coşkun M. B., Yalçın İ., Özarslan C. Physical properties of sweet corn seed (Zea mays saccharata Sturt.). Journal of Food Engineering. 2005. Vol. 74, № 4. P. 523–528. DOI: 10.1016/j.jfoodeng.2005.03.039.
8. Molenda M., Stasiak M. Determination of the elastic constants of cereal grains in uniaxial compression test. International Agrophysics. 2002. Vol. 16, № 1. P. 61–65.
9. Zewdu A., Solomon W. Moisture-dependent physical properties of TEF seed. Biosystems Engineering. 2006. Vol. 96, № 1. P. 57–63. DOI: 10.1016/j.biosystemseng.2006.09.008.
10. Дудін В. Ю., Білоус І. М. Дослідження процесу руйнування зерна кукурудзи з використанням цифрових моделей. Центральноукраїнський науковий вісник. Технічні науки. 2024. Т. 10, № 41, ч. 2. С. 123–130. DOI: 10.32515/2664-262X.2024.10(41).2.123-130.
11. Kubík Ľ., Božiková M., Kažimírová V. Mechanical properties of wheat grains at compression. Acta Technologica Agriculturae. 2021. Vol. 24, № 4. P. 202–208. DOI: 10.2478/ata-2021-0033.
12. Алієв Е. Б. Чисельне моделювання процесів агропромислового виробництва: підручник. Київ: Аграрна наука, 2023. 340 с. DOI: 10.31073/978-966-540-584-9.
13. Zhong J., Tao L., Li S., Zhang B., Wang J., He Y. Determination and interpretation of parameters of double- bud sugarcane model based on discrete element. Computers and Electronics in Agriculture. 2022. Vol. 203. P. 107428. DOI: 10.1016/j.compag.2022.107428.
14. Liu Z., Ma H., Zhao Y. Comparative study of discrete element modeling of tablets using multi-spheres, multi-super-ellipsoids, and polyhedrons. Powder Technology. 2021. Vol. 390. P. 34–49. DOI: 10.1016/j.powtec.2021.05.065.
15. Kruggel-Emden H., Rickelt S., Wirtz S., Scherer V. A study on the validity of the multi-sphere Discrete Element Method. Powder Technology. 2008. Vol. 188, № 2. P. 153–165. DOI: 10.1016/j.powtec.2008.04.037.
16. Wiącek J., Molenda M., Horabik J., Ooi J. Y. Influence of grain shape and intergranular friction on material behavior in uniaxial compression: experimental and DEM modeling. Powder Technology. 2012. Vol. 217. P. 435–442. DOI: 10.1016/j.powtec.2011.10.060.
17. Markauskas D., Kačianauskas R. Investigation of rice grain flow by multi-sphere particle model with rolling resistance. Granular Matter. 2010. Vol. 13, № 2. P. 143–148. DOI: 10.1007/s10035-010-0196-5.
18. Boac J. M., Casada M. E., Maghirang R. G., Harner J. P. Material and interaction properties of selected grains and oilseeds for modeling discrete particles. Transactions of the ASABE. 2010. Vol. 53, № 4. P. 1201–1216. DOI: 10.13031/2013.32577.
19. Basiouny M., El-Yamani A. Performance evaluation of two different hammer mills for grinding corn cobs. Journal of Soil Sciences and Agricultural Engineering. 2016. Vol. 7, № 1. P. 77–87. DOI: 10.21608/jssae.2016.39322.
20. Dibner J., Richards J. The digestive system: challenges and opportunities. The Journal of Applied Poultry Research. 2004. Vol. 13, № 1. P. 86–93. DOI: 10.1093/japr/13.1.86.
21. Wang L., Zhou W., Ding Z., Li X., Zhang C. Experimental determination of parameter effects on the coefficient of restitution of differently shaped maize in three-dimensions. Powder Technology. 2015. Vol. 284. P. 187–194. DOI: 10.1016/j.powtec.2015.06.042.
22. Markauskas D., Ramírez-Gómez Á., Kačianauskas R., Zdancevičius E. Maize grain shape approaches for DEM modelling. Computers and Electronics in Agriculture. 2015. Vol. 118. P. 247–258. DOI: 10.1016/j.compag.2015.09.004.
23. Ramaj I., Romuli S., Schock S., Müller J. Discrete element modelling of bulk behaviour of wheat (Triticum aestivum L.) cv. ‘Pionier’ during compressive loading. Biosystems Engineering. 2024. Vol. 242. P. 123–139. DOI: 10.1016/j.biosystemseng.2024.04.005.
24. Molenda M., Horabik J. Mechanical properties of granular agro-materials and food powders for industrial practice. In: Characterization of mechanical properties of particulate solids for storage and handling. Eds. Horabik J., Laskowski J. Lublin : Institute of Agrophysics PAS, 2005. 146 p.
25. AZoM. AISI 1026 Carbon Steel (UNS G10260). URL: https://www.azom.com/article.aspx?ArticleID=6583 (дата звернення: 05.10.2022).
26. Boac J., Casada M., Pordesimo L., Petingco M., Maghirang R., Harner J. Evaluation of particle models of corn kernels for discrete element method simulation of shelled corn mass flow. Smart Agricultural Technology. 2023. Vol. 4. P. 100197. DOI: 10.1016/j.atech.2023.100197.
27. Wang X., Wu W., Jia H. Calibration of discrete element parameters for simulating wheat crushing. Food Science & Nutrition. 2023. Vol. 11, № 12. P. 7751–7764. DOI: 10.1002/fsn3.3693.
Copyright (©) 2025, Elchyn Aliiev, Illia Bilous