DOI: https://doi.org/10.32515/2664-262X.2024.9(40).2.164-174

Hydrogen internal combustion engines in transport: enhancing efficiency and overcoming infrastructure challenges

Olexandr Kukharenko, Denys Shalapko, Lyudmila Tarandushka

About the Authors

Olexandr Kukharenko, student, National University of Shipbuilding, Kherson, Ukraine

Denys Shalapko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), National University of Shipbuilding, Kherson, Ukraine, е-mail: shalapko.denys@gmail.com, ORCID ID: 0000-0002-4311-3908

Lyudmila Tarandushka, Professor, Doctor in Technics (Doctor of Technic Sciences), Cherkasy State Technological University, Cherkasy, Ukrain, е-mail: tarandushkal@ukr.net, ORCID ID: 0000-0002-1410-9088

Abstract

This article delves into the promising realm of hydrogen technologies in the transportation sector, highlighting their potential to significantly reduce harmful emissions and promote sustainable development. The discussion begins with a comprehensive review of current hydrogen internal combustion engine (ICE) technologies, examining the advancements that have been made and the technical solutions available to enhance the efficiency of these engines. It underscores the environmental benefits of hydrogen ICEs, such as the reduction of greenhouse gases and pollutants, and explores the economic advantages, including decreased dependency on fossil fuels and the creation of new job opportunities. Furthermore, the article discusses the social benefits of adopting hydrogen technologies, such as improved public health and the potential for innovation-driven economic growth. It also addresses the significant infrastructural challenges associated with the production, storage, transportation, and distribution of hydrogen. Potential solutions to these challenges are proposed, including investments in new technologies, expansion of production capacities, and the development of specialized infrastructure. The article provides detailed case studies of successful hydrogen technology implementations in various countries. In Japan, hydrogen-powered buses in Tokyo demonstrate the environmental and technological advancements achieved. Germany’s hydrogen trains by Alstom illustrate the transition from diesel to hydrogen in public transportation, showcasing economic and ecological benefits. South Korea's hydrogen taxis in Seoul highlight the social impact and infrastructural development necessary for widespread adoption. Lastly, California’s extensive network of hydrogen fueling stations supports the growing number of hydrogen cars, reflecting a successful model of public-private partnership and government incentives. Through these case studies, the article emphasizes the transformative potential of hydrogen technologies in creating a sustainable and clean future for transportation. It calls for continued investments in technology, infrastructure, and collaboration between governments and the private sector to overcome existing challenges and fully realize the benefits of hydrogen as a key energy source in the transportation sector.

Keywords

hydrogen technologies, transportation sector, hydrogen internal combustion engines, fuel cells, engine efficiency

Full Text:

PDF

References

1. Gomes Antunes J.M, Mikalsen R., Roskilly A.P. An experimental study of a direct injection compression ignition hydrogen engine. International Journal of Hydrogen Energy. 2009. Vol. 34, Issue 15, P. 6516-6522.

2. Szwaja S, Grab-Rogalinski K. Hydrogen combustion in a compression ignition diesel engine. Int. J. Hydrogen Energy. 2009. Volume 34, Issue 10. Pages 4413-4421 doi: 10.1016/2009.03.020.

3. Shalapko, D. An experimental study of the wave effect in fuel equipment using hydrogen additives to diesel fuel. Technology audit and production reserves. 2018. № 6/1 (44). С. 36–40.

4. Шалапко, Д.О. Дослідження ефектів хвильових коливань в паливній апаратурі дизельного двигуна із застосуванням водневих добавок Збıрник наукових праць Національного університету кораблебудування імені адмірала Макарова. 2021. № 3 (486). С. 40-47.

5. Jayaprabakar, J., Arunkumar, T., Rangasamy, G., Parthipan, J., Anish, M., Varshini, G., & Kumar, B. K. (2024). Prospectus of hydrogen enrichment in internal combustion engines: Methodological insights on its production, injection, properties, performance and emissions. Fuel, 363, Article 131034. https://doi.org/10.1016/j.fuel.2024.131034

6. Zhuang, S., Wu, P., Li, W., Xuan, T., He, Z., Wang, Q., Xu, Q., & Zhang, L. (2024). An experimental study on in-cylinder soot formation and flame oscillation of renewable fuel blends in an optical engine. Fuel, 369, Article 131801. https://doi.org/10.1016/j.fuel.2024.131801

7. Шалапко, Д.О. Непрямі методи дослідження ефекту використання малих домішок водню до основного палива. Авиационно-космическая техника и технология. 2018. № 6 (150). С. 44–51.

8. Shalapko D. ‘Optical-graphic studies of hydrogen additives’ effects on diesel fuel atomization parameters’, Transport Problems. 2023. No 18(4), pp. 135–146. doi:10.20858/tp.2023.18.4.11.

9. Shalapko D. et al. Advanced fuel system with gaseous hydrogen additives. Bulletin of the Polish Academy of Sciences Technical Sciences. 2024. No 72(2), pp. 148837–148837. doi:10.24425/bpasts.2024.148837.

10. Shalapko D.O. ‘Investigation of the influence of the use of small hydrogen impurities to the main fuel on injection spraying. Collection of Scientific Publications NUS. 2021. No4. pp. 14–19. doi:10.15589/znp2021.4(487).3.

Citations

1. Gomes Antunes, J. M., Mikalsen, R. & Roskilly, A. P. (2009). An experimental study of a direct injection compression ignition hydrogen engine. International Journal of Hydrogen Energy, 34(15), 6516-6522.

2. Szwaja, S., & Grab-Rogalinski, K. (2009). Hydrogen combustion in a compression ignition diesel engine. International Journal of Hydrogen Energy, 34(10), 4421-4428. https://doi.org/10.1016/j.ijhydene.2009.03.020

3. Shalapko, D. (2018). An experimental study of the wave effect in fuel equipment using hydrogen additives to diesel fuel. Technology Audit and Production Reserves, 6(1), 36–40.

4. Shalapko, D. O. (2021). Doslidzhennia efektiv khvyl'ovykh kolyvan' v palyvnij aparaturi dyzel'noho dvyhuna iz zastosuvanniam vodnevykh dobavok [Investigation of wave oscillation effects in the fuel equipment of a diesel engine using hydrogen additives]. Zbırnyk naukovykh prats' Natsional'noho universytetu korablebuduvannia imeni admirala Makarova - Collection of Scientific Works of the National University of Shipbuilding Named after Admiral Makarov, 3(486), 40-47 [in Ukrainian].

5. Jayaprabakar, J., Arunkumar, T., Rangasamy, G., Parthipan, J., Anish, M., Varshini, G., & Kumar, B. K. (2024). Prospectus of hydrogen enrichment in internal combustion engines: Methodological insights on its production, injection, properties, performance and emissions. Fuel, 363, Article 131034. https://doi.org/10.1016/j.fuel.2024.131034

6. Zhuang, S., Wu, P., Li, W., Xuan, T., He, Z., Wang, Q., Xu, Q., & Zhang, L. (2024). An experimental study on in-cylinder soot formation and flame oscillation of renewable fuel blends in an optical engine. Fuel, 369, Article 131801. https://doi.org/10.1016/j.fuel.2024.131801

7. Shalapko, D. O. (2018). Nepriami metody doslidzhennia efektu vykorystannia malykh domishok vodniu do osnovnoho palyva [Indirect methods for investigating the effect of using small hydrogen admixtures to the base fuel]. Avyatsyonno-kosmycheskaia tekhnyka y tekhnolohyia - Aviation and Space Technology and Technology, 6(150), 44–51 [in Ukrainian].

8. Shalapko, D. (2023). Optical-graphic studies of hydrogen additives’ effects on diesel fuel atomization parameters. Transport Problems, 18(4), 135–146. https://doi.org/10.20858/tp.2023.18.4.11

9. Shalapko, D., et al. (2024). Advanced fuel system with gaseous hydrogen additives. Bulletin of the Polish Academy of Sciences Technical Sciences, 72(2), Article 148837. https://doi.org/10.24425/bpasts.2024.148837

10. Shalapko, D. O. (2021). Investigation of the influence of the use of small hydrogen impurities to the main fuel on injection spraying. Collection of Scientific Publications NUS, (4), 14–19. https://doi.org/10.15589/znp2021.4(487).3

Copyright (c) 2024 Olexandr Kukharenko, Denys Shalapko, Lyudmila Tarandushka