DOI: https://doi.org/10.32515/2664-262X.2024.9(40).2.66-78

Mathematical model of improving the quality of control of the mechatronic system of the car interior microclimate

Dmytro Holub, Viktor Aulin

About the Authors

Dmytro Holub, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: Dimchik529@gmail.com, ORCID ID: 0000-0003-4984-1161

Viktor Aulin, Professor, Doctor in Technics (Doctor of Technic Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: AulinVV@gmail.com, ORCID ID: 0000-0003-2737-120X

Abstract

An analysis of studies of microclimate control systems in the car interior was carried out and the requirements for climatic comfort of the space surrounding a person during the operation of the vehicle were formulated. The necessity of forming a climate comfort control system as a mechatronic system of a car, which has increased speed, consistency and accuracy of adjusting the values for its determination, is substantiated. A list of indicators is proposed that most accurately take into account the cumulative effect on climatic comfort in a multi-zone working space and allow to improve the quality of functioning of the mechatronic microclimate control system of the car interior. A mathematical model for improving the quality of control of the mechatronic system of the car interior microclimate has been developed. The model describes a multidimensional nonlinear electropneumomechanical control object and its structure. The dynamic properties of digital tracking drives based on direct current collector motors, which are part of the executive part of the mechatronic system for controlling the climate comfort of the car interior, were studied. An algorithm for implementing the model in the Matlab Simulink environment has been developed, which allows for detailed computer modeling of the control processes of the mechatronic climate comfort system in order to increase its accuracy and speed. The principles of forming a multi-channel regulator of a mechatronic system based on inverse models are proposed. These principles reflect the static properties of the non-linear control object and increase the coherence of the reactions of the channels of the car interior microclimate control system.

Keywords

mechatronic system, modeling, microclimate, car interior, automatic control, regulator, digital tracking drive

Full Text:

PDF

References

1. Аулін В.В., Голуб Д.В., Гриньків А.В. та ін. Методологічні і теоретичні основи забезпечення та підвищення надійності функціонування автомобільних транспортних систем: монографія. Кропивницький: Видавництво ТОВ "КОД", 2017. 370 с.

2. Аулін В.В., Голуб Д.В. Обґрунтування механізму функціонування мехатронної системи склоочищення автомобіля. Центральноукраїнський науковий вісник. Технічні науки. 2023. Вип. 7(38). Ч.1. С. 167-176.

3. Аулін В.В., Голуб Д.В., Замуренко А.С. Розробка математичної моделі мехатронного модуля системи рульового управління вантажних автомобілів. Підвищення надійності і ефективності машин, процесів і систем: матеріали конф. V Міжнар. наук.-практ. конф., 19-21 квіт. 2023 р., м. Кропивницький: ЦНТУ, 2023. С. 9-11.

4. Войчишин Ю.І., Круць Т.І., Зінько Р.В., Горбай О.З. Дослідження мікроклімату салону міського автобуса. Сучасні технології в машинобудуванні та транспорті. 2020. No1(14). С. 49-57.

5. Лук’яненко В.М, Галич І.В. Аналіз вимог до мікроклімату на робочому місці оператора мобільної сільськогосподарської техніки. Вісник Харківського національного технічного університету сільського господарства ім. П. Василенка. 2010. Т. 2, Вип. 93. С. 232-247.

6. Куліков Ю.А., Грибініченко М. В., Гончаров А. В. Системи охолодження, вентиляції та опалення автомобілів: монографія. Луганськ: СНУ ім. В. Даля, 2006. 241 с.

7. Nishant Agarwal1, Ekhlak Khan. Automobile Air Conditioning System. International Research Journal of Engeneering and Technology (IRJET), 05 Issue 06 June, 2018. Р. 2121-2125.

8. Rați S., Laza I.., Alexa V., Cioată V. Practical studies on car air conditioning systems. IOP Conf. Series: Materials Science and Engineering 393 (1):012073, 2018. 6 p.

9. Terry J. Hendricks. Optimization of vehicle air conditioning systems using transient air conditioning performance analysis. National Renewable Energy Laboratory. Copyright 2001 Society of Autmotive Engeneers, 2001. 10 p.

10. Şaban Ünal. An Experimental Study on a Bus Air Conditioner to Determine its Conformity to Design and Comfort Conditions. Yildiz Technical University Press, 2017. Р.1089-1101.

Citations

1. Aulin, V.V., Holub, D.V.& Hryn'kiv, A.V. et al. (2017). Metodolohichni i teoretychni osnovy zabezpechennia ta pidvyschennia nadijnosti funktsionuvannia avtomobil'nykh transportnykh system [Methodological and theoretical bases of maintenance and increase of reliability of functioning of automobile transport systems]. Kropyvnyts'kyj: Vydavnytstvo TOV "KOD" [in Ukrainian].

2. Aulin, V.V. & Holub, D.V. (2023). Obgruntuvannia mekhanizmu funktsionuvannia mekhatronnoi systemy skloochyschennia avtomobilia [Justification of the mechanism of operation of the mechatronic system of car windshield cleaning]. Tsentral'noukrains'kyj naukovyj visnyk. Tekhnichni nauky - Central Ukrainian scientific bulletin. Technical sciences, 7(38), 1, 167-176 [in Ukrainian].

3. Aulin, V.V., Holub, D.V. & Zamurenko, A.S. (2023). Rozrobka matematychnoi modeli mekhatronnoho modulia systemy rul'ovoho upravlinnia vantazhnykh avtomobiliv [Development of a mathematical model of the mechatronic module of the truck steering system]. Increasing the reliability and efficiency of machines, processes and systems: V Mizhnar. nauk.-prakt. konf.(19-21 kvit. 2023 r.) - V International science and practice conf. (pp. 9-11). Kropyvnyts'kyj: TsNTU [in Ukrainian].

4. Vojchyshyn, Yu.I., Kruts', T.I., Zin'ko, R.V. & Horba, O.Z. (2020). Doslidzhennia mikroklimatu salonu mis'koho avtobusa [Study of the microclimate of the interior of a city bus]. Suchasni tekhnolohii v mashynobuduvanni ta transporti - Modern technologies in mechanical engineering and transport, 1(14), 49-57 [in Ukrainian].

5. Luk'ianenko, V.M. & Halyc, I.V. (2010). Analiz vymoh do mikroklimatu na robochomu mistsi operatora mobil'noi sil's'kohospodars'koi tekhniky [Analysis of microclimate requirements at the workplace of the operator of mobile agricultural machinery]. Visnyk Kharkivs'koho natsional'noho tekhnichnoho universytetu sil's'koho hospodarstva im. P. Vasylenka - Bulletin of Kharkiv National Technical University of Agriculture named after P. Vasylenko, 2, 93, 232-247 [in Ukrainian].

6. Kulikov, Yu.A., Hrybinichenko, M. V. & Honcharov, A. V. (2006). Systemy okholodzhennia, ventyliatsii ta opalennia avtomobiliv [Systems of cooling, ventilation and heating of cars]. Luhans'k: SNU im. V. Dalia [in Ukrainian].

7. Nishant Agarwal1, Ekhlak Khan (2018). Automobile Air Conditioning System. International Research Journal of Engeneering and Technology (IRJET), 05 Issue 06 June. Р. 2121-2125.

8. Rați, S., Laza I.., Alexa, V., Cioată V. (2018) Practical studies on car air conditioning systems. IOP Conf. Series: Materials Science and Engineering 393 (1):012073. 6 p.

9. Terry J. Hendricks (2001). Optimization of vehicle air conditioning systems using transient air conditioning performance analysis. National Renewable Energy Laboratory. Copyright 2001 Society of Autmotive Engeneers. 10 p.

10. Şaban Ünal (2017). An Experimental Study on a Bus Air Conditioner to Determine its Conformity to Design and Comfort Conditions. Yildiz Technical University Press. Р.1089-1101.

Copyright (c) 2024 Dmytro Holub, Viktor Aulin