DOI: https://doi.org/10.32515/2664-262X.2024.9(40).2.23-31

Synthesis of load schemes of power elements of a ball-screw hydraulic power steering with an axial drive structure

Аnton Aparakin, Pavlo Yeromin, Vitaliy Mazhara

About the Authors

Аnton Aparakin, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine e-mail: anton.aparakin@gmail.com, ORCID ID: 0000-0002-5847-7739

Pavlo Yeromin, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID ID: 0000-0001-6650-3389

Vitaliy Mazhara, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: majara@ukr.net, ORCID ID: 0000-0001-7451-3798

Abstract

The well-known design of ball-screw hydraulic power steering is not without flaws - the bearing supports of the output shaft are the most loaded elements of the unit structure, and the elastic deformation of these supports, during operation, is the reason for the depressurization of the sealing system in this area. The purpose of the work is to determine the layout of ball-screw hydraulic power steering with a steering arm, using which it is possible to ensure the maximum beneficial effect from the use of a system of active unloading of the rolling bearings of the shaft sector, increasing the load-bearing capacity and ensuring better tightness. The study is based on the provisions of the theory of resistance of materials. The paper examines and compares the two most common configurations for the location of the steering arm's longitudinal axis relative to the cavity of the gear shaft: coaxial and perpendicular location. To achieve the goal, an analysis of the interaction system of the output shaft of the ball-screw hydraulic power steering with rolling bearings, steering arm, and rack and pinion transmission was carried out for the given two configurations. The operating conditions of the output shaft, under its load, and the reactions of the supports are described by systems of equations. For the purpose of comparative evaluation of the ratio of the reactions of the supports depending on the load and taking into account the real linear dimensions of the parts, a methodology and a number of assumptions have been developed in the work. With the help of the developed methodology, a relative comparison of the layout configurations studied in the work was carried out, taking into account the direction of rotation of the output shaft of the ball-screw hydraulic power steering with the steering arm installed. As a result of the study, the composition of the ball-screw hydraulic power steering with steering arm was determined, which allows to ensure the maximum beneficial effect of the use of the system of active unloading of the rolling bearings of the shaft sector. The use of the steering arm installation scheme, in which the longitudinal axis of the arm is located coaxially relative to the cavity of the gear shaft, creates prerequisites for the development, in the future, of an active system for unloading the rolling bearings at the points of the bearing reactions. Such a system can be implemented, for example, due to the use of hydraulics elements, thereby ensuring an increase in bearing capacity, reducing the load on the output shaft rolling support elements and reducing the impact of this load on the tightness of the unit.

Keywords

steering wheel, power steering, load, motor vehicle

Full Text:

PDF

References

1. Рульовий механізм транспортного засобу з вмонтованим підсилювачем : пат. 68413 Україна : МПК В62D 5/06. № 2001085715 ; заявл. 13.08.2001 ; опубл. 16.08.2004, Бюл. №8.

2. Армійські автомобілі. Основи руху, будова, характеристики: навч. посіб. / Білоус Б.Д. та ін. Львів : Видавництво НУ «Львівська політехніка», 2007. 536 с.

3. Bosch Servotwin electro-hydraulic steering system : веб сайт. URL: https://www.bosch-mobility.com/en/solutions/steering/servotwin/ (дата звернення 10.04.2024).

4. Динамічне управління від VOLVO : веб сайт. URL: https://www.volvotrucks.com.ua/uk-ua/trucks/features/volvo-dynamic-steering.html (дата звернення 10.04.2024).

5. Knorr Bremse. Steering systems for commercial vehicles – Precision and safety : веб сайт. URL: https://www.knorr-bremsecvs.com/en/products_1/steering/standard_page__broad_6.jsp (дата звернення 10.04.2024).

6. Xia L, Jiang H. An electronically controlled hydraulic power steering system for heavy vehicles. Advances in Mechanical Engineering. 2016. № 8(11). DOI: 10.1177/1687814016679566 (дата звернення 10.04.2024).

7. Du H, Zhang Q, Chen S, Fang J. Modeling, simulation, and experimental validation of electro-hydraulic power steering system in multi-axle vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2019. Vol. 233(2) P. 317-332. DOI: 10.1177/0954407017743346 (дата звернення 10.04.2024).

8. Guo Z, Wu H, Zhao W, Wang C. Coordinated control strategy for vehicle electro-hydraulic compound steering system. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2021. Vol. 235(2-3) P. 732-743. DOI: 10.1177/0954407020949480 (дата звернення 10.04.2024).

9. Liu C, Wang C, Zhao W, Guo Z. Displacement characteristics hierarchical control of electro-hydraulic compound steering for commercial vehicle. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2022. Vol. 236(12) P. 6395-6409. DOI: 10.1177/09544062211069293 (дата звернення 10.04.2024).

10. Cui T, Wang S, Qu Y, Chen X. Parameters optimization of electro-hydraulic power steering system based on multi-objective collaborative method. Complex Engineering Systems. 2023. Vol. 3(1). DOI: http://dx.doi.org/10.20517/ces.2022.57.

11. Апаракін А.Р. Реалізація гідростатичних підшипникових опор цапф вала-сектора кулько-гвинтового гідропідсилювача руля. Комплексне забезпечення якості технологічних процесів та систем: зб. матеріалів ХІІІ міжнар. наук.-практ. конф., 25-26 травн. 2023 р. Чернігів: НУ "Чернігівська політехніка", 2023. Т. 1. С. 290.

12. Апаракін А.Р. Cхема навантаження силових елементів з аксіальною структурою приводу кулько-гвинтового гідропідсилювача. Науковий простір: актуальні питання, досягнення та інновації: зб. матеріалів V міжнар. наук.-практ. конф., 26 травн. 2023 р. Черкаси: Вінниця - «Європейська наукова платформа», 2023. С. 143-145. DOI: https://doi.org/10.36074/mcnd-26.05.2023.

Citations

1. Pidhayetskyy, M.M., Povyetkin, S.M., Bilyakovskyy, R.P. (2004). Rulovyy mekhanizm transportnoho zasobu z vmontovanym pidsylyuvachem [The steering mechanism of a vehicle with a built-in power amplifier] (Patent of Ukraine №68413). State intellectual property department of Ukraine.

2. Bilous B. D., Tkachuk P. P., Andrusyk Ya. F., Bilous A. B., Burkovskyy A. S., Bilous N. B., et al. (2007). Armiyski avtomobili. Osnovy rukhu, budova, kharakterystyky: navch. posib. [Army cars. Basics of movement, structure, characteristics: study guide]. Lviv: NU «Lvivska politekhnika» [in Ukrainian].

3. Bosch Servotwin electro-hydraulic steering system. Retrieved from https://www.bosch-mobility.com/en/solutions/steering/servotwin/.

4. Dynamichne upravlinnya vid VOLVO [Dynamic steering from VOLVO]. Retrieved from https://www.volvotrucks.com.ua/uk-ua/trucks/features/volvo-dynamic-steering.html [in Ukrainian].

5. Knorr Bremse. Steering systems for commercial vehicles – Precision and safety. Retrieved from https://www.knorr-bremsecvs.com/en/products_1/steering/standard_page__broad_6.jsp.

6. Xia L, Jiang H. (2016) An electronically controlled hydraulic power steering system for heavy vehicles. Advances in Mechanical Engineering, 8(11). DOI: 10.1177/1687814016679566.

7. Du H, Zhang Q, Chen S, Fang J. (2019) Modeling, simulation, and experimental validation of electro-hydraulic power steering system in multi-axle vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(2), P. 317-332. DOI: 10.1177/0954407017743346.

8. Guo Z, Wu H, Zhao W, Wang C. (2021) Coordinated control strategy for vehicle electro-hydraulic compound steering system. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 235(2-3), P. 732-743. DOI: 10.1177/0954407020949480.

9. Liu C, Wang C, Zhao W, Guo Z. (2022) Displacement characteristics hierarchical control of electro-hydraulic compound steering for commercial vehicle. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(12), P. 6395-6409. DOI: 10.1177/09544062211069293.

10. Cui T, Wang S, Qu Y, Chen X. (2023) Parameters optimization of electro-hydraulic power steering system based on multi-objective collaborative method. Complex Engineering Systems, 3(1). DOI: http://dx.doi.org/10.20517/ces.2022.57.

11. Aparakin, A. R. (2023). Realizatsiya hidrostatychnykh pidshypnykovykh opor tsapf vala-sektora kulko-hvyntovoho hidropidsylyuvacha rulya [Implementation of hydrostatic bearing supports of the shaft-sector trunnions of the ball-screw power steering]. Kompleksne zabezpechennya yakosti tekhnolohichnykh protsesiv ta system: zb. materialiv XIII mizhnar. nauk.-prakt. konf. – Proceedings of the 13th International Conference Comprehensive assurance of the quality of technological processes and systems, 1, 290 [in Ukrainian].

12. Aparakin, A. R. (2023). Skhema navantazhennya sylovykh elementiv z aksialnoyu strukturoyu pryvodu kulko-hvyntovoho hidropidsylyuvacha [Load diagram of power elements with an axial drive structure of the ball-screw hydraulic power steering]. Naukovyy prostir: aktualni pytannya, dosyahnennya ta innovatsiyi: zb. materialiv V mizhnar. nauk.-prakt. konf. – Proceedings of the 5th International Conference Scientific space: current issues, achievements and innovations, 143-145. DOI: https://doi.org/10.36074/mcnd-26.05.2023 [in Ukrainian].

Copyright (c) 2024 Аnton Aparakin, Pavlo Yeromin, Vitaliy Mazhara