DOI: https://doi.org/10.32515/2664-262X.2024.9(40).1.83-94

Mathematical model of the upper working element of the mechanical-pneumatic collector of insect pests of nightshade crops

Volodymyr Onopa, Dmytro Artemenko, Oleh Kyslun, Volodymyr Onopa

About the Authors

Volodymyr Onopa, Engineer, Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, ORCID ID: 0000-0002-9177-5746

Dmytro Artemenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: artemenkodyu@kntu.kr.ua, ORCID ID: 0000-0002-6633-0470

Oleh Kyslun, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: kyslun@gmail.com, ORCID ID: 0000-0001-6059-3731

Volodymyr Onopa, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: pc_kntu@ukr.net, ORCID ID: 0000-0002-9177-5746

Abstract

The paper presents the results of exploratory theoretical studies of the design features of the upper working element of the device for the mechanical-pneumatic collection of insect pests of nightshade crops. During the analysis of scientific sources, it was established that insect pests to a large extent lead to serious losses in the world production of agricultural products. Pesticide treatment is the main method of combating them, but this practice leads to environmental pollution, threats to human health and increased risk of diseases. In this regard, great attention is paid to the development of ecologically safe methods of control. It was found that one of the most effective methods is the physical collection of insect pests with devices of various effects. Therefore, the further development of new designs of devices for carrying out the process of collecting insect pests is an urgent task. On the basis of the conducted experimental studies and relying on the previously conducted works, the main shortcomings of the pneumatic-type collection devices for pest control were determined. Since most designs of such devices have suction slits, the uneven distribution of air flow in them leads to inefficient collection of pests of agricultural crops from the surface of plants. Another and the main disadvantage of such devices is the formation of several streams that interact to form the following technological process - when pests are blown away by the injection stream, they move to the surface of the soil and do not have time to fall into the suction streams, and younger individuals that can hold on to the surface of the leaves are not blown away at all and remain in place, and this leads to the need for repeated passes of the unit and a decrease in the quality of processing. For this purpose, a new device for collecting insect pests was proposed, designed for effective collection of pests of nightshade crops using a mechanical-pneumatic method. The design of the upper working element of the device for collecting pest insects was theoretically substantiated and it was established that the angle of attack of the working surface of the device lies in the range from 10 to 60°. The effectiveness of the proposed design of the new device is ensured by the increased effect of mechanical action on the plant of nightshade crops without its damage and the exclusion of pest retention at all levels along the height of the plant, the maximum collection of pests in one pass of the device.

Keywords

insect pests of agricultural crops, pest collection, collection device, exterminator, plant protection

Full Text:

PDF

References

1. Food and Agriculture Organization of the United Nations (FAO) (2020). New standards to curb the global spread of plant pests and diseases. Retrieved from: http://www.fao.org/news/story/en/item/1187738/icode/

2. Narenderan, S.T., Meyyanathan, S.N. & Babu, B. (2020). Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Research International. Р. 133.

3. Gucol, T., Bendera, I., Nowak J. (2005). Zbieracz stonki. Rolniczy Przeglad Techniczny. №5 (75). Р. 14 [in Polish].

4. Khelemendyk, M.M. & Sheremeta, R.S. (2000). Ahrehat dlia zbyrannia i znyschennia shkidnykiv sil's'kohospodars'kykh roslyn [Unit for collecting and destroying pests of agricultural plants] Sil's'kohospodars'ki mashyny  Agricultural machinery, 6, 185-190 [in Ukrainian].

5. Onopa, V.A. & Petrenko, M.M. (1999) Zbyrannia shkidnykiv sil's'kohospodars'kykh kul'tur za dopomohoiu pnevmodezynsektora [Collection of pests of agricultural crops with the help of a pneumodisinfector]. Zbirnyk naukovykh prats' NAU. Mekhanizatsiia sil's'kohospodars'koho vyrobnytstva  Collection. scientific works of NAU. Mechanization of agricultural production, 8, 166-168 [in Ukrainian].

6. Vincent, C. & Chagnon, R. (2000). Vacuuming tarnished plant bug on strawberry: a bench study of operational parameters versus insect behavior. Entomologia Exerimentalis et. Applicata. 2003. 97(3). 347–354.

7. Effects of airflow velocity and travel speed on the removal of Colorado potato beetles from potato plants / Lacasse B. et. al. Canadian Agricultural Engineering. 1998. Vol. 40, Issue 4. P. 265–272.

8. Khelifi, M., Laguë, C. & Lacasse B. (2001). Pneumatic control of insects in plant protection. Physical control methods in plant protection. P. 261–269.

9. Mohammadali Haddad Derafshi (2006). Design and Construction of a Pneumatic-thermal Machine for Controlling Colorado Potato Beetle (Leptinotarsa decemlineata). Journal of Applied Sciences. Vol. 6, No 4. P. 919–925.

10. Charles, Vincent & Gilles, Boiteau. (2001). Pneumatic Control of Agricultural Insect Pests. Physical Control Methods in Plant Protection. P. 270–281.

11. Taras Gucol, Ivan Bendera & Janusz Nowak. Grounding the parameters of the pneumatic device for pests collecting. TEKA Kom. Mot. Energ. Roln. 2007. 7A. 35–40.

12. Onopa, V.A., Artemenko, D.Yu. & Liva Ye.H. (2015). Rozrobka ta obgruntuvannia konstruktsii pnevmodezynsektora dlia zbyrannia shkidnykiv pasl'onovykh kul'tur [Development and substantiation of the construction of a pneumodisinfector for collecting pests of nightshade crops]. Problems of design, production and operation of agricultural machinery: X Mizhnarodna naukovo-praktychnakonferentsiia (5-6 lyst. 2015 r.)  X International scientific and practical conference (pp. 22-23). Kirovohrad: KNTU [in Ukrainian].

13. Onopa, V.A., Artemenko, D.Yu. & Bakal, R.V. (2018). Teoretychne obgruntuvannia zony dii prystroiu dlia zbyrannia shkidnykiv pasl'onovykh kul'tur. [Theoretical substantiation of the area operation of the device for collecting pests of nightshade crops]. Scientific Journal «ScienceRise», 10(51), 19-23 [in Ukrainian].

14. Onopa, V. (2021). Perspektyvni metody borot'by z shkidnykamy kartopli (pasl'onovykh kul'tur). [Promising methods of pest control potatoes (solanaceous crops)]. Nauka-vyrobnytstvu  Science-production, 4-6. [in Ukrainian].

15. Bendera, I. M. & Hutsol, T. D. (2002). Zbyrannia kolorads'kykh zhukiv pnevmomekhanichnymy zasobamy [Collection of Colorado beetles by pneumatic means]. Zb. nauk. pr. PDATA  Coll. of science Ave. PDATA, 10, 238-240 [in Ukrainian].

16. Hutsol, T.D., Bendera, I.M. & Bychyns'kyj, S.O. (2005). Obgruntuvannia formy zabirnoi kamery pnevmomekhanichnoho prystroiu [Justification of the shape of the intake chamber of the pneumomechanical. Ahrarnyj visnyk Prychornomor'ia – Agrarian Bulletin of the Black Sea Region, 28, 70-75 [in Ukrainian].

17. Onopa, V.A., & Artemenko, D.Yu. (2022). Rezul'taty eksperymental'nykh doslidzhen' pnevmatychnoho zbyrannia shkidnykiv sil's'kohospodars'kykh kul'tur [Results of experimental studies of pneumatic harvesting of pests of agricultural crops]. Konstruiuvannia, vyrobnytstvo ta ekspluatatsiia sil's'kohospodars'kykh mashyn  Design, production and operation of agricultural machines, 52, 32-40 [in Ukrainian].

18. Kucheruk, I.M., Horbachuk, I.T. & Lutsyk, P.P. (2006). Zahal'nyj kurs fizyky [General course of physics]. Mekhanika. Molekuliarna fizyka i termodynamika [Mechanics. Molecular physics and thermodynamics]. (Vol. 1). K.: Tekhnika [in Ukrainian].

Citations

1. Food and Agriculture Organization of the United Nations (FAO) New standards to curb the global spread of plant pests and diseases. 2020. URL: http://www.fao.org/news/story/en/item/1187738/icode/ (дата звернення 02.04.2024)

2. Narenderan S.T., Meyyanathan S.N., Babu B.. Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Research International. 2020. Р. 133.

3. Gucol T., Bendera I., Nowak J. Zbieracz stonki. Rolniczy Przeglad Techniczny. 2005. №5 (75). Р. 14.

4. Хелемендик М.М., Шеремета Р.С. Агрегат для збирання і знищення шкідників сільськогосподарських рослин. Сільськогосподарські машини. 2000. Вип. 6. С. 185-190.

5. Онопа В.А., Петренко М.М. Збирання шкідників сільськогосподарських культур за допомогою пневмодезинсектора. Збірник наукових праць НАУ. Механізація сільськогосподарського виробництва. 1999. т. 8. С. 166-168.

6. Vincent C., Chagnon R. Vacuuming tarnished plant bug on strawberry: a bench study of operational parameters versus insect behavior. Entomologia Exerimentalis et. Applicata. 2003. 97(3). Р. 347–354.

7. Effects of airflow velocity and travel speed on the removal of Colorado potato beetles from potato plants / Lacasse B. et. al. Canadian Agricultural Engineering. 1998. Vol. 40, Issue 4. P. 265–272.

8. Khelifi, M., Laguë C., Lacasse B. Pneumatic control of insects in plant protection. Physical control methods in plant protection. 2001. P. 261–269.

9. Mohammadali Haddad Derafshi. Design and Construction of a Pneumatic-thermal Machine for Controlling Colorado Potato Beetle (Leptinotarsa decemlineata). Journal of Applied Sciences. 2006. Vol. 6, No 4. P. 919–925.

10. Charles Vincent & Gilles Boiteau. Pneumatic Control of Agricultural Insect Pests. Physical Control Methods in Plant Protection. 2001. Р 270–281.

11. Taras Gucol, Ivan Bendera, Janusz Nowak. Grounding the parameters of the pneumatic device for pests collecting. TEKA Kom. Mot. Energ. Roln. 2007. 7A. 35–40.

12. Онопа В.А., Артеменко Д.Ю., Ліва Є.Г. Розробка та обґрунтування конструкції пневмодезинсектора для збирання шкідників пасльонових культур. Проблеми конструювання, виробництва та експлуатації сільськогосподарської техніки: Матеріали X Міжнародної науково-практичної конференції., 5-6 лист. 2015 р. Кіровоград: КНТУ, 2015. C. 22-23.

13. В.А. Онопа, Д.Ю. Артеменко, Р.В. Бакал. Теоретичне обґрунтування зони дії пристрою для збирання шкідників пасльонових культур. Scientific Journal «ScienceRise». 2018. №10(51). С. 19-23.

14. В. Онопа. Перспективні методи боротьби з шкідниками картоплі (пасльонових культур). Наука–виробництву. 2021. C. 4-6.

15. Бендера І. М., Гуцол Т. Д. Збирання колорадських жуків пневмомеханічними засобами. Зб. наук. пр. ПДАТА. 2002. Вип.10. С. 238-240.

16. Гуцол Т.Д., Бендера І.М., Бичинський С.О. Обґрунтування форми забірної камери пневмомеханічного пристрою. Аграрний вісник Причорномор’я. 2005. №28. С. 70-75.

17. Онопа В.А., Артеменко Д.Ю.. Результати експериментальних досліджень пневматичного збирання шкідників сільськогосподарських культур. Конструювання, виробництво та експлуатація сільськогосподарських машин. 2022. Вип. 52. С. 32-40.

18. Кучерук І.М., Горбачук І.Т., Луцик П.П. Загальний курс фізики. Т.1: Механіка. Молекулярна фізика і термодинаміка. К.: Техніка, 2006. 532 с.

Copyright (c) 2024 Volodymyr Onopa, Dmytro Artemenko, Oleh Kyslun, Volodymyr Onopa