DOI: https://doi.org/10.32515/2664-262X.2024.9(40).1.144-151

The research of ways of efficiency increasing of electronic car system diagnostic operations

Mykhailo Krasota, Yuriy Kuleshkov, Igor Shepelenko, Ruslan Osin, Timofey Rudenko

About the Authors

Mykhailo Krasota, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: krasotamv@ukr.net, ORCID ID: 0000-0001-6879-7624

Yuriy Kuleshkov, Professor, Doctor in Technics (Doctor of Technic Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: kul090455@gmail.com, ORCID ID: 0000-0001-6492-6919

Igor Shepelenko, Professor, Doctor in Technics (Doctor of Technic Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: kntucpfzk@gmail.com, ORCID ID: 0000-0003-1251-1687

Ruslan Osin, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: ruslan_osin@ukr.net, ORCID ID: 0000-0002-8927-5363

Timofey Rudenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: r-t-v@mail.ua, ORCID ID: 0000-0001-6879-7624

Abstract

The purpose of this study is to find ways to reduce production time spent on diagnostic operations during maintenance or repair of electronic control systems (ECS) in automotive vehicles. Existing methods of diagnosing engine control systems in vehicles are sufficiently effective, but in most cases, they require highly skilled personnel, the use of additional complex and expensive equipment, prolonged service cycles, which in turn increases the complexity of maintenance, and also does not provide for prior prediction of faults and system failures. Analysis of scientific publications has shown that to reduce the time for maintenance and repair of electronic systems, it is necessary to predict the residual life of ECS components in vehicles during maintenance, to further reduce the labor intensity of diagnostics and current repairs. In other words, diagnostics performed during maintenance or repair should include predicting the residual life of electronic system components. For the most critical ECS components in vehicles, it is proposed to apply a strategy of replacing them upon reaching a certain mileage, rather than upon failure. This organization method will reduce vehicle downtime in repair and reduce the time to troubleshoot ECS component failures. A method has been proposed for identifying design elements that limit the reliability of the ECS, taking into account the degree of influence of their failures on the engine's technical and economic characteristics and the cost of restoring its performance. The availability of such information is the basis of the ECS maintainability support system. An algorithm has been developed to search for hidden faults in the components of ECS subsystems, which includes predicting the failure of ECS components. This will help reduce the labor intensity of diagnostic operations during maintenance and repair.

Keywords

diagnostics, tractor equipment, electronic control system, operational efficiency, maintenance, repair

Full Text:

PDF

References

1. Kanarchuk, V. Ye., Polians'kyj, S. K. & Dmytriiev, M. M. (2003). Nadijnist' mashyn [Reliability of machines]. Kyiv: Lybid' [in Ukrainian].

2. Volkov, V. P. et al. (2019). Zahal'nyj pidkhid do formuvannia modelej otsiniuvannia tekhnichnoho stanu avtomobilia v umovakh ekspluatatsii [A general approach to the formation of models for evaluating the technical condition of a car in operating conditions]. Visnyk mashynobuduvannia ta transportu - Herald of mechanical engineering and transport, 1, 27-37 [in Ukrainian].

3. Aulin, V. V. & Panarin, D. Ye. (2014). Udoskonalennia protsesu tekhnichnoho obsluhovuvannia avtomobiliv z vykorystanniam metodiv dystantsijnoi elektronnoi diahnostyky [Improving the process of car maintenance using methods of remote electronic diagnostics]. Mashynobuduvannia i transport - Mechanical engineering and transport, 4, 88-91 [in Ukrainian].

4. Khajmenov, O., Osin, R. & Krasota, M. (2024). Doslidzhennia shliakhiv pidvyschennia efektyvnosti tekhnichnykh obsluhovuvan' ta remontiv elektronnykh system avtomobiliv [Research of ways to improve the efficiency of technical services and repairs of electronic systems of cars]. Zbirnyk prats' molodykh naukovtsiv - Collection of works of young scientists, 14, 32-38 [in Ukrainian].

5. Manasa K. V., Shashidhara K. S. & Vinayaka Kulkarni Ananth Rao (2022). Automation for Vehicle Communication Diagnostics. IEEE 2nd Mysore Sub Section International Conference. 16-17 October 2022. doi: 10.1109/MysuruCon55714.2022.9972561. [in English].

6. Komorska, I.M., Wołczyński, Z. & Borczuch, AD (2019). Diagnosis of sensor faults in a combustion engine control system with the artificial neural network. Diagnostyka. 20(4), 19-25. doi:10.29354/ diag/110440 [in English] .

7. Abdulaev, E. K., Makharatkin, P. N. & Shihov A. I. (2019). Diagnostic methods and tools for truck parts and components. Journal of Physics: Conference Series, 1384, 1, 012001 [in English].

8. Fornal'chyk, Ye.Yu., Oliskevych, M. S., Mastykash, O. L. & Pel'o, R. A. (2004). Tekhnichna ekspluatatsiia ta nadijnist' avtomobiliv [Technical operation and reliability of cars]. L'viv : Afisha [in Ukrainian].

9. Dembits'kyj, V.M., Pavliuk, V.I. & Prydiuk, V.M. (2018). Tekhnichna ekspluatatsiia avtomobiliv [Technical operation of cars]. Luts'k: Luts'kyj NTU [in Ukrainian].

10. Kovalenko, V. M. & Schurikhin, V. K. (2017). Diahnostyka i tekhnolohiia remontu avtomobiliv [Diagnostics and technology of car repair]. Kyiv : Litera LTD [in Ukrainian].

Citations

1. Канарчук В. Є., Полянський С. К., Дмитрієв М. М. Надійність машин: підручник. Київ: Либідь, 2003. 424 с.

2. Загальний підхід до формування моделей оцінювання технічного стану автомобіля в умовах експлуатації / Волков В. П. та ін. Вісник машинобудування та транспорту. 2019. №1. С. 27–37.

3. Аулін В. В., Панарін Д. Є. Удосконалення процесу технічного обслуговування автомобілів з використанням методів дистанційної електронної діагностики. Машинобудування і транспорт. 2014. Вип. 4. С. 88-91.

4. Хайменов О., Осін Р., Красота М. Дослідження шляхів підвищення ефективності технічних обслуговувань та ремонтів електронних систем автомобілів. Збірник праць молодих науковців. 2024. Вип. 14. С. 32-38.

5. Manasa K. V., Shashidhara K. S., Vinayaka Kulkarni Ananth Rao. Automation for Vehicle Communication Diagnostics. IEEE 2nd Mysore Sub Section International Conference, 16-17 October 2022. doi: 10.1109/MysuruCon55714.2022.9972561

6. Komorska I.M., Wołczyński Z., Borczuch A.D. Diagnosis of sensor faults in a combustion engine control system with the artificial neural network. Diagnostyka. 2019. № 20(4). Р. 19-25. doi:10.29354/diag/110440.

7. Abdulaev E. K., Makharatkin P. N., Shihov A. I. Diagnostic methods and tools for truck parts and components. Journal of Physics: Conference Series. 2019. Т. 1384, №. 1. P. 012001.

8. Технічна експлуатація та надійність автомобілів : навч. посіб. / Форнальчик Є.Ю., Оліскевич М. С., Мастикаш О. Л., Пельо Р. А. Львів : Афіша, 2004. 492 с.

9. Технічна експлуатація автомобілів: навч. посіб. / Дембіцький В.М., Павлюк В.І., Придюк В.М. Луцьк: Луцький НТУ, 2018. 473 с.

10. Коваленко В. М., Щуріхін В. К. Діагностика і технологія ремонту автомобілів : підручник. Київ : Літера ЛТД, 2017. 224 с.

Copyright (c) 2024 Mykhailo Krasota, Yuriy Kuleshkov, Igor Shepelenko, Ruslan Osin, Timofey Rudenko