DOI: https://doi.org/10.32515/2664-262X.2023.8(39).2.41-47

Wear resistance of titanium alloy VT1-0 with a modified surface under abrasive action

Anatoly Rutkovskіy, Sergiy Markovych, Sergiy Mahopets, Viktor Markovych

About the Authors

Anatoly Rutkovskіy, Senior Research, PhD in Technics (Candidate of Technics Sciences), National Academy of sciences of Ukraine G.S. Pisarenko institute for problems of strength, Ukraine, e-mail: rut2000@ukr.net

Sergiy Markovych, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropivnitskiy, Ukraine, e-mail: marko60@ukr.net, ORCID ID: 0000-0003-1393-2360

Sergiy Mahopets, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropivnitskiy, Ukraine, e-mail: magserg@ukr.net, ORCID ID: 0000-0002-1522-4555

Viktor Markovych, Holder of the third (educational and scientific) , Central Ukrainian National Technical University, Kropivnitskiy, Ukraine, e-mail: markovich241082@gmail.com

Abstract

The cost of rebuilding machine parts as a result of wear is enormous and rising every year. At a US symposium on reducing wear in machinery, the general consensus was that wear management is central to solving national problems such as energy conservation, material reduction, and ensuring the reliability and safety of mechanical systems. Nitriding significantly increases the wear resistance of metals and alloys. The formation of chemical compounds in titanium alloys by introducing nitrogen or increasing its concentration limit changes the rate of chemical reactions and the kinetics of oxide film growth, and increases their adhesion to the substrate. This leads to a decrease in the intensity of adhesive node formation and improves the tribological characteristics of titanium alloys. Therefore, it is necessary to study a titanium alloy with a hardened nitrided layer to obtain experimental results to determine the regularity of the influence of diffusion saturation parameters on wear resistance under abrasive conditions. The universal installation "VIPA-1" was used for vacuum ion nitriding in the pulse mode and the formation of diffusion layers on the surface. Technological parameters of vacuum ion nitriding in the pulse mode: temperature - 550°C, pressure - 25-150 Pa, processing time - 10 hours, ratio of reaction gases - 80% Ag + 20% N2. For experimental studies, samples of VT1-0 titanium alloy with dimensions of 30x30 mm and a thickness of 5 mm were used. The surface hardening of the samples was carried out uniformly around the entire perimeter, which ensures a uniform thickness of the diffusion layer. The analysis of the operating conditions of the friction surfaces of most structural elements made it possible to use the installation for bench tests according to the scheme of wear with a free abrasive (Brinell method). Wear tests were carried out on an experimental setup in accordance with GOST 23.208-79 (Fig. 2). The friction process was modelled in the presence of a free, not rigidly fixed abrasive, which coincides with the American standard ASTM C 6568. The experiment was carried out at a sliding speed of 0.158 m/s, a load of 20 kg (with a shoulder of 272 mm) and a friction path of 50 m. Steel 45, hardened to a hardness of 480-500 HB, was used as a reference. The wear body was a disc made of VT1-0 titanium alloy with a diameter of 100 mm and a thickness of 3.5 mm. On the basis of experimental studies, it has been established that the main mechanisms for increasing the wear resistance of titanium alloys as a result of the process of diffusion saturation of the surface with nitrogen during vacuum ion nitriding in the pulse mode are strengthening of the surface layers; creation of a favourable residual stress pattern; change in the patterns of deformation of the surface layers; change in the chemical and adhesive properties of the surface; transfer of diffusing nitrogen atoms into the depth of the matrix during friction due to the tribodiffusion effect. Conclusions. 1. Maximum wear rate of titanium alloy VT1-0 without hardening. 2. The effect of thermocyclic nitriding increases the wear resistance of VT1-0 alloy: in sand - 3 times; in water + sand - 3.5 times; in salt + sand - 2.5 times. 3. The effect of isothermal nitriding increases the wear resistance of VT1-0 alloy: in sand - 4 times; in water + sand - 3.5 times; in salt + sand - 2.5 times.

Keywords

ion nitriding, pulse mode, titanium alloy, wear resistance, free abrasive

Full Text:

PDF

References

1. Nazmy, M. & Staubli, M. (1994). Alloy modification of γTiAl for improved mechanical properties. Scr. met. Et mater, Vol.31, №7, P. 829-833 [in English].

2. Hohaiev, K.O. & Radchenko, O.K. (2001). Deformuvannia tytanovykh splaviv prokatuvanniam [Deformation of titanium alloys by rolling]. Metaloznavstvo ta obrobka metaliv - Metallurgy and metal processing, 4, 25–29 [in Ukrainian].

3. Fedorak, R.M. (1998). Dyfuzijne zaliznennia ta tsementatsiia tytanu [Diffusion fertilization and cementation of titanium]. Metaloznavstvo ta obrobka metaliv - Metallurgy and metal processing, 4, 52–55 [in Ukrainian].

4. Shalapko, Yu.I. & Honcharov, V.V. (1999). Pidvyschennia antyfryktsijnykh vlastyvostej tytanovoho splavu OT4 pry lazernomu oprominiuvanni poverkhni [Increasing the antifriction properties of the OT4 titanium alloy during laser irradiation of the surface]. Visnyk Tekhnolohichnoho universytetu Podillia - Bulletin of the Technological University of Podillia, 6, 177–178 [in Ukrainian].

5. Gurrappa, I. (2001). Effect of aluminizing on the oxidation of the titanium alloy, IMI 834. Oxidation of Metals,56, 1-2, 73-87 [in English].

6. Yue,T.M., Cheung, T.M. & Man, H.C. (2000). The effects of laser surface treatment on the corrosion properties of Ti-6Al-4V alloy in Hank’s solution. Journal Materials Science Letters, Vol.19, No.3, P.205–208 [in English].

7. Fedirko, V., Yas'kiv, O. & Prytula, A. (2003). Azotuvannia i boruvannia tytanovykh splaviv - perspektyvy kombinovanoho obroblennia [Nitriding and boronizing of titanium alloys - prospects for combined processing]. Mashynoznavstvo - Mechanical science, 4, 23–26 [in Ukrainian].

8. Liashenko, B.A., Markovych, S.I. & Mykhajliuta, S.S. (2017). Rozrobka tekhnolohichnoho protsesu vakuumnoho azotuvannia porshniv dvyhuniv v pul'suiuchomu puchku plazmy [Development of a technological process of vacuum nitriding of engine pistons in a pulsating plasma beam]. Zahal'noderzhavnyj mizhvidomchyj naukovo-tekhnichnyj zbirnyk. Konstruiuvannia, vyrobnytstvo ta ekspluatatsiia sil's'kohospodars'kykh mashyn. All-state interdepartmental scientific and technical collection. Design, production and operation of agricultural machines, 47, 1, 158-166 [in Ukrainian].

9. Rutkovs'kyj, A. V., Markovych, S.I. & Mykhajliuta, S.S. (2022). Analiz napruzheno-deformovanoho stanu ionnoazotovanykh zrazkiv iz pokryttiam v umovakh izotermichnoi ta termotsyklichnoi povzuchosti [Analysis of the stress-strain state of ion-nitrogenized coated samples under isothermal and thermocyclic creep conditions]. Tsentral'noukrains'kyj naukovyj visnyk. Tekhnichni nauky - Central Ukrainian scientific bulletin. Technical sciences, 6(37), I, 3-9 [in Ukrainian].

10. Rutkovs'kyj, A. V., Markovych, S.I. & Mykhajliuta, S.S. (2020). Teplostijkist' ionnoazotovanykh aliuminiievykh splaviv pry izotermichnomu ta termotsyklichnomu vplyvi [Heat resistance of ion-nitrogenized aluminum alloys under isothermal and thermocyclic exposure]. Tsentral'noukrains'kyj naukovyj visnyk. Tekhnichni nauky - Central Ukrainian scientific bulletin. Technical sciences, 3(34), 72-81 [in Ukrainian].

Citations

1. Nazmy M., Staubli M. Alloy modification of γTiAl for improved mechanical properties. Scr. met. Et mater. 1994. Vol. 31, №7. Р. 829-833.

2. Гогаєв К.О., Радченко О.К. Деформування титанових сплавів прокатуванням. Металознавство та обробка металів. 2001. №4. С. 25–29.

3. Федорак Р.М. Дифузійне залізнення та цементація титану. Металознавство та обробка металів. 1998. №4. С. 52–55.

4. Шалапко Ю.І., Гончаров В.В. Підвищення антифрикційних властивостей титанового сплаву ОТ4 при лазерному опромінюванні поверхні. Вісник Технологічного університету Поділля. 1999. № 6. С. 177–178.

5. Gurrappa I. Effect of aluminizing on the oxidation of the titanium alloy, IMI 834. Oxidation of Metals. 2001. 56, №1-2. Р. 73-87.

6. Yue T.M., Cheung T.M., Man H.C. The effects of laser surface treatment on the corrosion properties of Ti-6Al-4V alloy in Hank’s solution. Journal Materials Science Letters. 2000. Vol. 19, №3. Р. 205–208.

7. Федірко В., Яськів О., Притула А. Азотування і борування титанових сплавів - перспективи комбінованого оброблення. Машинознавство. 2003. №4. С. 23–26.

8. Ляшенко Б.А., С.І. Маркович, Михайлюта С.С. Розробка технологічного процесу вакуумного азотування поршнів двигунів в пульсуючому пучку плазми. Загальнодержавний міжвідомчий науково-технічний збірник. Конструювання, виробництво та експлуатація сільськогосподарських машин. 2017. Вип. 47, ч. 1. С. 158-166.

9. Рутковський А. В., Маркович С.І., Михайлюта С.С. Аналіз напружено-деформованого стану іонноазотованих зразків із покриттям в умовах ізотермічної та термоциклічної повзучості. Центральноукраїнський науковий вісник. Технічні науки. 2022. Вип. 6(37), ч. І. С. 3-9.

10. Рутковський А.В., Маркович С.І., Михайлюта С.С. Теплостійкість іонноазотованих алюмінієвих сплавів при ізотермічному та термоциклічному впливі. Центральноукраїнський науковий вісник. Технічні науки. 2020. Вип. 3(34). С. 72-81.

Copyright (c) 2023 Anatoly Rutkovskіy, Sergiy Markovych, Sergiy Mahopets, Viktor Markovych