DOI: https://doi.org/10.32515/2664-262X.2023.8(39).2.77-83
Review of the influence of concrete creep on the operation of pre-stressed steel-reinforced concrete structures of civil defense structures
About the Authors
Аnton Hasenkо, Associate Professor, Doctor in Technics (Doctor of Technic Sciences), Educational and Scientific Institute of Architecture, Construction and Land Management, National University "Yuri Kondratyuk Poltava Polytechnic", Poltava, Ukraine, e-mail: gasentk@gmail.com, ORCID ID: 0000-0003-1045-8077
Victor Dariienko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: vvdarienko@gmail.com, ORCID ID: 0000-0001-9023-6030
Mykola Bibik, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Director of "SOLID POLTAVA" LLC, Poltava, Ukraine, e-mail: nbibik@gmail.com, ORCID ID: 0009-0001-8681-486X
Dmytro Bibik, PhD in Technics (Candidate of Technics Sciences), «PB «INTERSTAL» LLC, Poltava, Ukraine, e-mail: dmytro.bibik@gmail.com, ORCID ID: 0000-0002-3896-699X
Viktor Slon, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Kherson State agrarian and economic University, Kherson, Ukraine, e-mail: viktor.ukrain2015@gmail.com
Abstract
The rheological properties of concrete are mainly determined by its creep properties, which affect the stress-strain state of the structure over time. In the case of pre-stressing a steel-reinforced concrete structure, forces are redistributed in its section between highly loaded and lightly loaded elements, namely between steel reinforcement and concrete. It should be noted that the supporting frame of buildings and structures (in addition to reliability, safe operation and economic feasibility) must guarantee functional suitability. It is impossible to determine the functional suitability of the structure without a correct prediction of the redistribution of stresses in time between the concrete and the reinforcement, which occurs as a result of the creep of concrete. According to the current norms of DBN B.2.6-98:2009 and EN (Eurocode 2), the criterion for the appearance of the limit state of reinforced concrete structures is the achievement of limit values by the deformations of compressed concrete. Therefore, a detailed study of the rheological properties of prestressed reinforced concrete is undoubtedly an urgent issue. The paper analyzes general information about the creep of concrete and its effect on losses during prestressing, including with the use of modern finite element modeling programs, which allow not only physically nonlinear characteristics of concrete to be specified when creating models of reinforced concrete structures, but also take into account the geometric nonlinearity of the work of composite reinforced concrete structure, but also to specify the rheological properties of concrete, in particular, creep characteristics.
Conducted studies of the influence of concrete creep on the work of bent pre-stressed steel-reinforced concrete structures prove that the main reason for the increase in deflections of such structures under long-term load action is the creep of concrete in the compressed cross-sectional area. Taking into account during the numerical modeling of the bent pre-stressed combined structure the influences of the second order, namely the creep in time of the stressed concrete, leads to a decrease in the stresses in the compressed zone of the concrete by 6.5%, but to an increase in the stresses in the stretched reinforcement by 0.6% and , which is most significant, to increase the deflections of the structure by 23%.
Keywords
steel-reinforced concrete structures, pre-stressing, concrete creep
Full Text:
PDF
References
1. Babych, V.Ie. Polianovska, O.Ie. & Boreichuk, L.M. (2016). Analiz rozrakhunku deformatsij zalizobetonnykh zghynal'nykh elementiv za riznymy metodykamy [Analysis of calculation of deformations of reinforced concrete bending elements by various methods]. Zb. nauk. pr. NUVHP: Resursoekonomni materialy, konstruktsii, budivli ta sporudy Coll. of science Ave. NUVHP: Resource-saving materials, constructions, buildings and structures, 32, 121-128 [in Ukrainian].
2. Bambura, A.M., Dorogova, О.V. & Petryk, Yu.M. (2020). Napruzheno-deformovanyy stan, nesucha zdatnistʹ ta moment vynyknennya trishchyn postnapruzhenykh z•hynnykh zalizobetonnykh elementiv za modyfikovanym deformatsiynym metodom [The stress-strain state, bearing capacity and moment of cracking of post-stressed bending reinforced concrete elements according to the modified deformation method]. Nauka ta budivnytstvo Science and construction, 24 (2), 11-18 [in Ukrainian].
3. Bashyns'ka, S.Yu. & Barabash, M.S. (2016). Porivnial'nyj analiz metodiv chysel'noho modeliuvannia plastychnykh deformatsij betonu [Comparative analysis of methods of numerical modeling of plastic deformations of concrete]. Zb. nauk. pr. PDABA: Budivnytstvo, materialoznavstvo, mashynobuduvannia Coll. of science PDABA Ave: Construction, materials science, mechanical engineering, 91, 32-39 [in Ukrainian].
4. Bibik, D.V. & Semko, O.V. (2010). Vyznachennia vnutrishnikh zusyl' u pererizi stalezalizobetonnoi balky z urakhuvanniam stadijnosti vyhotovlennia [Determination of internal forces in the cross-section of a steel-reinforced concrete beam, taking into account the stages of production]. Zb. nauk. pr. PDABA: Budivnytstvo, materialoznavstvo, mashynobuduvannia Coll. of science pr. PDABA: Construction, materials science, mechanical engineering, 56, 47-53 [in Ukrainian].
5. Betonni ta zalizobetonni konstruktsii. Osnovni polozhennia proektuvannia [Concrete and reinforced concrete structures. Basic provisions of design]. (2009). DBN V.2.6-98:2009. Kyiv: M-vo rehionalnoho rozvytku, budivnytstva ta zhytlovo-komunalnoho hospodarstva Ukrainy [in Ukrainian].
6. Deng, Yu, Shen, M., Zhang, H., Zhang, P., Terry, Y.P. Yuen, Hansapinyo, C. et al. (2021). Experimental and analytical studies on steel-reinforced concrete composite members with bonded prestressed CFRP tendon under eccentric tension. Composite Structures, Vol. 271, P. 114-124. https://doi.org/10.1016/j.compstruct.2021.114124 [in English].
7. Hasenko, A.V., (2021). Previous self-stresses creation methods review in bent steel reinforced concrete structures with solid cross section. Academic journal. Series: Industrial Machine Building, Civil Engineering, Vol. 2 (57), P. 82-89. https://doi.org/10.26906/znp.2021.57.2589 [in English].
8. Pavlikov, A.M., Harkava, О.V., Hasenko, A.V. & Andriiets, К.І. (2019). Comparative analysis of numerical simulation results of work of biaxially bended reinforced concrete beams with experimental data. Bulletin of Odessa State Academy of Civil Engineering and Architecture, Vol. 77, P. 84-92. https://doi.org/10.31650/2415-377X-2019-77-84-92 [in English].
9. Semko, O.V. & Hasenko, A.V. (2022). Classification of self-stressed steel-concrete composite structures. Lecture Notes in Civil Engineering, Vol. 181, P. 367-374. https://doi.org/10.1007/978-3-030-85043-2_34 [in English].
Citations
1. Бабич В.Є. Поляновська О.Є., Борейчук Л.М. Аналіз розрахунку деформацій залізобетонних згинальних елементів за різними методиками. Зб. наук. пр. НУВГП: Ресурсоекономні матеріали, конструкції, будівлі та споруди. 2016. Вип. 32. С. 121-128.
2. Бамбура А.М., Дорогова О.В., Петрук Ю.М. Напружено-деформований стан, несуча здатність та момент виникнення тріщин постнапружених згинних залізобетонних елементів за модифікованим деформаційним методом. Наука та будівництво. 2020. Том 24. Вип. 2. С. 11-18.
3. Башинська С.Ю., Барабаш М.С. Порівняльний аналіз методів чисельного моделювання пластичних деформацій бетону. Зб. наук. пр. ПДАБА: Будівництво, матеріалознавство, машинобудування. 2016. Вип. 91. С. 32-39.
4. Бібік Д.В., Семко О.В. Визначення внутрішніх зусиль у перерізі сталезалізобетонної балки з урахуванням стадійності виготовлення. Зб. наук. пр. ПДАБА: Будівництво, матеріалознавство, машинобудування. 2010. Вип. 56. С. 47-53.
5. ДБН В.2.6-98:2009. Бетонні та залізобетонні конструкції. Основні положення проектування. Київ: М-во регіонального розвитку, будівництва та житлово-комунального господарства України. 2009.
6. Deng Yu, Shen, M., Zhang H., Zhang P., Terry Y.P. Yuen, Hansapinyo C. et al. Experimental and analytical studies on steel-reinforced concrete composite members with bonded prestressed CFRP tendon under eccentric tension. Composite Structures. 2021. Vol. 271. Р. 114-124. https://doi.org/10.1016/j.compstruct.2021.114124
7. Hasenko A.V. Previous self-stresses creation methods review in bent steel reinforced concrete structures with solid cross section. Academic journal. Series: Industrial Machine Building, Civil Engineering. 2021. Vol. 2 (57). Р. 82-89. https://doi.org/10.26906/znp.2021.57.2589
8. Pavlikov A.M., Harkava О.V., Hasenko A.V. & Andriiets К.І. Comparative analysis of numerical simulation results of work of biaxially bended reinforced concrete beams with experimental data. Bulletin of Odessa State Academy of Civil Engineering and Architecture. 2019. Vol. 77. Р. 84-92. https://doi.org/10.31650/2415-377X-2019-77-84-92
9. Semko O.V. & Hasenko A.V. Classification of self-stressed steel-concrete composite structures. Lecture Notes in Civil Engineering. 2022. Vol. 181. Р. 367-374. https://doi.org/10.1007/978-3-030-85043-2_34
Copyright (c) 2023 Аnton Hasenkо, Victor Dariienko, Mykola Bibik, Dmytro Bibik, Viktor Slon
Review of the influence of concrete creep on the operation of pre-stressed steel-reinforced concrete structures of civil defense structures
About the Authors
Аnton Hasenkо, Associate Professor, Doctor in Technics (Doctor of Technic Sciences), Educational and Scientific Institute of Architecture, Construction and Land Management, National University "Yuri Kondratyuk Poltava Polytechnic", Poltava, Ukraine, e-mail: gasentk@gmail.com, ORCID ID: 0000-0003-1045-8077
Victor Dariienko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: vvdarienko@gmail.com, ORCID ID: 0000-0001-9023-6030
Mykola Bibik, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Director of "SOLID POLTAVA" LLC, Poltava, Ukraine, e-mail: nbibik@gmail.com, ORCID ID: 0009-0001-8681-486X
Dmytro Bibik, PhD in Technics (Candidate of Technics Sciences), «PB «INTERSTAL» LLC, Poltava, Ukraine, e-mail: dmytro.bibik@gmail.com, ORCID ID: 0000-0002-3896-699X
Viktor Slon, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Kherson State agrarian and economic University, Kherson, Ukraine, e-mail: viktor.ukrain2015@gmail.com
Abstract
Keywords
Full Text:
PDFReferences
1. Babych, V.Ie. Polianovska, O.Ie. & Boreichuk, L.M. (2016). Analiz rozrakhunku deformatsij zalizobetonnykh zghynal'nykh elementiv za riznymy metodykamy [Analysis of calculation of deformations of reinforced concrete bending elements by various methods]. Zb. nauk. pr. NUVHP: Resursoekonomni materialy, konstruktsii, budivli ta sporudy Coll. of science Ave. NUVHP: Resource-saving materials, constructions, buildings and structures, 32, 121-128 [in Ukrainian].
2. Bambura, A.M., Dorogova, О.V. & Petryk, Yu.M. (2020). Napruzheno-deformovanyy stan, nesucha zdatnistʹ ta moment vynyknennya trishchyn postnapruzhenykh z•hynnykh zalizobetonnykh elementiv za modyfikovanym deformatsiynym metodom [The stress-strain state, bearing capacity and moment of cracking of post-stressed bending reinforced concrete elements according to the modified deformation method]. Nauka ta budivnytstvo Science and construction, 24 (2), 11-18 [in Ukrainian].
3. Bashyns'ka, S.Yu. & Barabash, M.S. (2016). Porivnial'nyj analiz metodiv chysel'noho modeliuvannia plastychnykh deformatsij betonu [Comparative analysis of methods of numerical modeling of plastic deformations of concrete]. Zb. nauk. pr. PDABA: Budivnytstvo, materialoznavstvo, mashynobuduvannia Coll. of science PDABA Ave: Construction, materials science, mechanical engineering, 91, 32-39 [in Ukrainian].
4. Bibik, D.V. & Semko, O.V. (2010). Vyznachennia vnutrishnikh zusyl' u pererizi stalezalizobetonnoi balky z urakhuvanniam stadijnosti vyhotovlennia [Determination of internal forces in the cross-section of a steel-reinforced concrete beam, taking into account the stages of production]. Zb. nauk. pr. PDABA: Budivnytstvo, materialoznavstvo, mashynobuduvannia Coll. of science pr. PDABA: Construction, materials science, mechanical engineering, 56, 47-53 [in Ukrainian].
5. Betonni ta zalizobetonni konstruktsii. Osnovni polozhennia proektuvannia [Concrete and reinforced concrete structures. Basic provisions of design]. (2009). DBN V.2.6-98:2009. Kyiv: M-vo rehionalnoho rozvytku, budivnytstva ta zhytlovo-komunalnoho hospodarstva Ukrainy [in Ukrainian].
6. Deng, Yu, Shen, M., Zhang, H., Zhang, P., Terry, Y.P. Yuen, Hansapinyo, C. et al. (2021). Experimental and analytical studies on steel-reinforced concrete composite members with bonded prestressed CFRP tendon under eccentric tension. Composite Structures, Vol. 271, P. 114-124. https://doi.org/10.1016/j.compstruct.2021.114124 [in English].
7. Hasenko, A.V., (2021). Previous self-stresses creation methods review in bent steel reinforced concrete structures with solid cross section. Academic journal. Series: Industrial Machine Building, Civil Engineering, Vol. 2 (57), P. 82-89. https://doi.org/10.26906/znp.2021.57.2589 [in English].
8. Pavlikov, A.M., Harkava, О.V., Hasenko, A.V. & Andriiets, К.І. (2019). Comparative analysis of numerical simulation results of work of biaxially bended reinforced concrete beams with experimental data. Bulletin of Odessa State Academy of Civil Engineering and Architecture, Vol. 77, P. 84-92. https://doi.org/10.31650/2415-377X-2019-77-84-92 [in English].
9. Semko, O.V. & Hasenko, A.V. (2022). Classification of self-stressed steel-concrete composite structures. Lecture Notes in Civil Engineering, Vol. 181, P. 367-374. https://doi.org/10.1007/978-3-030-85043-2_34 [in English].
Citations
1. Бабич В.Є. Поляновська О.Є., Борейчук Л.М. Аналіз розрахунку деформацій залізобетонних згинальних елементів за різними методиками. Зб. наук. пр. НУВГП: Ресурсоекономні матеріали, конструкції, будівлі та споруди. 2016. Вип. 32. С. 121-128.
2. Бамбура А.М., Дорогова О.В., Петрук Ю.М. Напружено-деформований стан, несуча здатність та момент виникнення тріщин постнапружених згинних залізобетонних елементів за модифікованим деформаційним методом. Наука та будівництво. 2020. Том 24. Вип. 2. С. 11-18.
3. Башинська С.Ю., Барабаш М.С. Порівняльний аналіз методів чисельного моделювання пластичних деформацій бетону. Зб. наук. пр. ПДАБА: Будівництво, матеріалознавство, машинобудування. 2016. Вип. 91. С. 32-39.
4. Бібік Д.В., Семко О.В. Визначення внутрішніх зусиль у перерізі сталезалізобетонної балки з урахуванням стадійності виготовлення. Зб. наук. пр. ПДАБА: Будівництво, матеріалознавство, машинобудування. 2010. Вип. 56. С. 47-53.
5. ДБН В.2.6-98:2009. Бетонні та залізобетонні конструкції. Основні положення проектування. Київ: М-во регіонального розвитку, будівництва та житлово-комунального господарства України. 2009.
6. Deng Yu, Shen, M., Zhang H., Zhang P., Terry Y.P. Yuen, Hansapinyo C. et al. Experimental and analytical studies on steel-reinforced concrete composite members with bonded prestressed CFRP tendon under eccentric tension. Composite Structures. 2021. Vol. 271. Р. 114-124. https://doi.org/10.1016/j.compstruct.2021.114124
7. Hasenko A.V. Previous self-stresses creation methods review in bent steel reinforced concrete structures with solid cross section. Academic journal. Series: Industrial Machine Building, Civil Engineering. 2021. Vol. 2 (57). Р. 82-89. https://doi.org/10.26906/znp.2021.57.2589
8. Pavlikov A.M., Harkava О.V., Hasenko A.V. & Andriiets К.І. Comparative analysis of numerical simulation results of work of biaxially bended reinforced concrete beams with experimental data. Bulletin of Odessa State Academy of Civil Engineering and Architecture. 2019. Vol. 77. Р. 84-92. https://doi.org/10.31650/2415-377X-2019-77-84-92
9. Semko O.V. & Hasenko A.V. Classification of self-stressed steel-concrete composite structures. Lecture Notes in Civil Engineering. 2022. Vol. 181. Р. 367-374. https://doi.org/10.1007/978-3-030-85043-2_34