DOI: https://doi.org/10.32515/2664-262X.2023.8(39).2.24-34

Features of structures and technological design of working bodies of bladed screw mixers

Ivan Нevko, Roman Leshchuk, Andriy Briksa, Oleg Stibailo, Serhiy Koval

About the Authors

Ivan Нevko, Professor, Doctor in Technics (Doctor of Technic Sciences), Ivan Pulyuy Ternopil National Technical University, Ternopil, Ukraine, e-mail: gevkoivan1@ukr.net, ORCID ID: 0000-0001-5170-0857

Roman Leshchuk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Ivan Pulyuy Ternopil National Technical University, Ternopil, Ukraine, ORCID ID: 0000-0002-0380-2063

Andriy Briksa, post-graduate, Ivan Pulyuy Ternopil National Technical University, Ternopil, Ukraine, ORCID ID: 0009-0001-3223-0682

Oleg Stibailo, post-graduate, Ivan Pulyuy Ternopil National Technical University, Ternopil, Ukraine, ORCID ID: 0009-0007-9680-5426

Serhiy Koval, post-graduate, Ivan Pulyuy Ternopil National Technical University, Ternopil, Ukraine, ORCID ID: 0009-0005-8175-9258

Abstract

Blade screw mixers are typical tools for mixing building materials, compound feed, various types of products in the food industry, etc. The principle of their operation uses a combination of the operation of moving multicomponent mixtures with the operation of mixing them. Features of bladed screw working bodies of mixers are the arrangement of blades along a helical line along the axis of the shaft, on which they are, as a rule, immovably fixed. However, separate structures of working bodies can be located on the shaft with the possibility of rotation. The production of the working body of the blade screw mixer in the most technological ways may involve the following sequence of technological operations: 1. Winding a spiral of the appropriate diameter. Drilling holes with a drill head on the end surface of a spiral wound with a dense package on the edge of the spiral, which is installed in the conductor (provided that a mechanical connection will be used in the design of the auger). Calibrating the helix to a given pitch. Installation (screwing) of a spiral on a hollow shaft with a given pitch. Fixation of the spiral on the hollow shaft (welded connection). Production of blade elements of the appropriate profile (stamping, cutting). Drilling of mounting holes on the end surface of the blade elements (provided that a mechanical connection will be used in the design of the auger). Fastening the blade elements on the spiral: option 1: in the holes with a bolt or rivet connection; option 2: using a welded connection. 2. Winding a spiral of the appropriate diameter from a rectangular profile blank. Cutting (cutting) segmental openings (removals) of the appropriate size and profile on the end surface of a dense package wound on the edge of a spiral to form the necessary blade elements on it. Calibrating the helix to a given pitch. Installation (screwing) of a spiral on a hollow shaft with a given pitch. Fixation of the spiral on the hollow shaft (welded connection). 3. The production of an L-shaped bladed spiral involves the cutting (cutting) of segmental holes (removals) of the appropriate size and profile on the end surface of the L-shaped profile workpiece to form the necessary blade elements on it (the operation can also be used for a rectangular workpiece). Winding the L-shaped spiral on the frame with an internal continuous cylindrical part of the corresponding diameter. Calibration of the L-shaped spiral to a given pitch. Drilling of fastening holes at the ends on the end surface of the cylindrical part of the L-shaped spiral. The manufacturing technology of bladed screw working bodies of mixers significantly affects their technical and economic indicators and is ensured by the use of various methods. Technological features of the design parameters of the blade spirals of the mixers, which are made in various ways from rolled sheet, tape or L-shaped profile (angle). The results of calculating the production cost of manufacturing 1 m/p of a bladed spiral using different manufacturing methods showed that the most economically effective method of manufacturing bladed spirals is winding a dense package of spirals along the inner end profile from rectangular blanks followed by cutting (cutting out) segmental holes (removals ) and calibration to a given step, as in general and other methods that use winding. The production of blade spirals by methods using stamping or rolling is many times more expensive.

Keywords

blades, screw working body, mixer, method, technological design

Full Text:

PDF

References

1. Diachun, A., Vasylkiv, V., Korol, O., Myhailiuk, V., Golovatyi, I. & Kuras, A. (2021). Investigation of geometrical parameters in screw surfaces whirling process. Scientific Journal of TNTU, Vol. 101, No. 1, P. 68–78. https://doi.org/10.33108/visnyk_tntu2021.01.068 [in English].

2. Feng, Guang- liang & Bai, Yin-shan (2006). Some moulding ways of spiral vane. Coal Mine Machinery, Vol. 27, No. 9, Р. 835-849 [in English].

3. Gheorghe Pleşu (2014). Package of calculus, drawing and design of the rolling tools for manufacturing of the helical surfaces. International Journal of Modern Manufacturing Technologies, No 1, P. 65-70 [in English].

4. Hevko, I.B., Dyachun, A.Ye., Lyashuk, O.L., Martsenko, S.V. & Gypka, A.B. (2016). Research the force parameters of forming the screw cleaning elements. INMATEH - Agricultural Engineering, Vol. 49, №2, P. 77-82 [in English].

5. Li Zheng Feng & Li Qiang Jiang (2013). Design of combined helical blade manufacturing device. Advanced Materials Research, Vol. 753–755, 1386–1390. Crossref. Doi: 10.4028/www.scientific.net/amr 753-755.1386. https://doi.org/10.4028/www.scientific.net/AMR [in English].

6. Quan-Quan Han & Ri-Liang Liu (2013). Mathematical model and tool path calculation for helical groove whirling. Research Journal of Applied Sciences, Engineering and Technology, 6 (19), 3584–358 https://doi.org/10.19026/rjaset.6.3563 [in English].

7. Rogatinskiy, R., Hevko, I., Gypka, A., Garmatyk, O. & Martsenko, S. (2017). Feasibility study of the method choice of manufacturing screw cleaning elements with the development and use of software. Acta Technologica Agriculturae, No. 2, 36-41. https://doi.org/10.1515/ata-2017-0007 [in English].

8. Hevko, I., Diachun, A., Lyashuk, O., Vovk, Y. & Hupka, A. (2021). Study of Dynamic and Power Parameters of the Screw Workpieces with a Curved Profile Turning. Design, Simulation, Manufacturing: The Innovation Exchange: Book of Abstracts of the 4th International Conference, June 8-11, 2021. Sumy: IATDI, 2021. Vol. 1. Р. 385-394 [in English].

9. Vasylkiv, V., Pylypets, M., Danylchenko, L. & Radyk, D. (2021). Investigation of deflections of winded screw flights and auger billets in the processes of their manufacture. Scientific Journal of TNTU, Vol. 104, No. 4, P. 33–43. https://doi.org/10.33108/visnyk_tntu2021.04.033 [in English].

10. Vasyl'kiv, V. V. (2015). Rozvytok naukovo-prykladnykh osnov rozroblennia tekhnolohij vyrobnytstva hvyntovykh i shnekovykh zahotovok z vykorystanniam unifikatsii [Development of the scientific and applied foundations of the development of technologies for the production of screw and auger blanks using unification]. Extended abstract of Doctor’s thesis. L'viv [in Ukrainian].

11. Vasyl'kiv, V. V., Radyk, L. D. & Hevko, I. B. (2004). Tekhnolohichni ta konstruktyvni osoblyvosti vyhotovlennia hvyntovykh zahotovok z lystovoho prokatu [Technological and constructive features of the production of screw blanks from rolled sheet]. Naukovi notatky  Scientific notes, 14, 12–18 [in Ukrainian].

12. Нevko, B.M. et al. (2009). Tekhnolohichni osnovy formotvorennia riznoprofil'nykh hvyntovykh zahotovok [Technological bases of shaping of various profile screw blanks]. Ternopil: Publication of TDTU named after I. Pulyuya [in Ukrainian].

13. Hevko, Iv. (2015). Tekhnolohichnist' konstruktsij hvyntovykh sektsijnykh robochykh orhaniv [Technological features of designs of helical sectional working bodies]. Visnyk TNTU  Bulletin of TNTU, 79, 3, 148-155 [in Ukrainian].

14. Hud', V.Z. (2021). Mekhaniko-tekhnolohichni osnovy rozrobky bahatofunktsional'nykh sektsijnykh shnekiv dlia zernovoho materialu [Mechanical and technological basics of the development of multifunctional sectional screws for grain material]. Extended abstract of Doctor’s thesis. Ternopil' [in Ukrainian].

15. Hevko, I. B. et al. (2019). Hnuchki hvyntovi konveiery: proektuvannia, tekhnolohiia vyhotovlennia, eksperymental'ni doslidzhennia [Flexible screw conveyors: design, manufacturing technology, experimental studies]. Ternopil': FOP Palianytsia V. A. [in Ukrainian].

16. Liashuk, O. L., Diachun,A. Ye., Klendij, V. M. & Tret'iakov, O. L. (2018). Doslidzhennia sylovykh parametriv protsesu zmitsnennia hvyntovykh poverkhon' robochykh orhaniv deformuiuchymy puansonamy [Study of force parameters of the process of strengthening the helical surfaces of working bodies by deforming punches]. Rozvidka ta rozrobka naftovykh i hazovykh rodovysch  Exploration and development of oil and gas deposits, 1 (66), 38-43 [in Ukrainian].

17. Liashuk, O. L., Diachun, A. Ye. & Tret'iakov, O. L. (2018). Doslidzhennia deformatsii zahotovky v protsesi narizannia zovnishnikh radiusnykh kanavok prystroiem iz dekil'koma riztsiamy [Study of deformation of the workpiece in the process of cutting external radius grooves with a device with several cutters]. Perspektyvni tekhnolohii ta prylady  Promising technologies and devices, 12, 105-110 [in Ukrainian].

18. Pylypets', M. I., Vasyl'kiv, V. V., Radyk, D. L. & Pylypets', O. M. (2021). Peredumovy rozroblennia kombinovanykh operatsij vyhotovlennia hvyntovykh i shnekovykh zahotovok metodom obrobky metaliv tyskom [Prerequisites for the development of combined operations for the production of screw and auger workpieces by the method of pressure metal processing]. Perspektyvni tekhnolohii ta prylady  Promising technologies and devices, 18, 112–123 [in Ukrainian].

19. Pylypets', M. I. ( 2002). Naukovo-tekhnolohichni osnovy vyrobnytstva navyvnykh zahotovok detalej mashyn [Scientific and technological basis of production of winding blanks of machine parts] Extended abstract of Doctor’s thesis. L'viv [in Ukrainian].

20. Rohatyns'kyj, R.M., Hevko, I.B. & Diachun, A.Ye. (2014). Naukovo-prykladni osnovy stvorennia hvyntovykh transportno-tekhnolohichnykh mekhanizmiv [Scientific and applied foundations of the creation of screw transport and technological mechanisms]. Ternopil' : Vyd-vo TNTU imeni Ivana Puliuia [in Ukrainian].

21. Hevko, B.M. et al. (2008). Tekhnolohichni osnovy formoutvorennia spetsial'nykh profil'nykh hvyntovykh detalej [Technological bases of forming of special profile screw parts]. Ternopil': TDTU imeni Ivana Puliuia [in Ukrainian].

Citations

1. Diachun A., Vasylkiv V., Korol O., Myhailiuk V., Golovatyi I., Kuras A. Investigation of geometrical parameters in screw surfaces whirling process. Scientific Journal of TNTU. 2021. Vol. 101, No. 1. P. 68–78. https://doi.org/10.33108/visnyk_tntu2021.01.068

2. Feng Guang- liang, Bai Yin-shan. Some moulding ways of spiral vane. Coal Mine Machinery. 2006 Vol. 27, No. 9. Р. 835-849.

3. Gheorghe Pleşu. Package of calculus, drawing and design of the rolling tools for manufacturing of the helical surfaces. International Journal of Modern Manufacturing Technologies. 2014. No. 1. P. 65-70.

4. Hevko I.B., Dyachun A.Ye., Lyashuk O.L., Martsenko S.V., Gypka A.B. Research the force parameters of forming the screw cleaning elements. INMATEH - Agricultural Engineering. 2016. Vol. 49, № 2. P.77-82.

5. Li Zheng Feng, Li Qiang Jiang. Design of combined helical blade manufacturing device. Advanced Materials Research. 2013. Vol. 753–755. P. 1386–1390. Crossref. Doi: 10.4028/www.scientific.net/amr 753-755.1386. https://doi.org/10.4028/www.scientific.net/AMR

6. Quan-Quan Han and Ri-Liang Liu. Mathematical model and tool path calculation for helical groove whirling. Research Journal of Applied Sciences, Engineering and Technology. 2013. 6(19). Р. 3584–3587. https://doi.org/10.19026/rjaset.6.3563

7. Rogatinskiy R., Hevko I., Gypka A., Garmatyk O., Martsenko S. Feasibility study of the method choice of manufacturing screw cleaning elements with the development and use of software. Acta Technologica Agriculturae. 2017. No. 2. P. 36–41. https://doi.org/10.1515/ata-2017-0007

8. Ivan Hevko, Andrii Diachun, Oleg Lyashuk, Yuriy Vovk, Andriy Hupka. Study of Dynamic and Power Parameters of the Screw Workpieces with a Curved Profile Turning. Design, Simulation, Manufacturing: The Innovation Exchange: Book of Abstracts of the 4th International Conference, June 8-11, 2021. Sumy: IATDI, 2021. Vol. 1. Р. 385-394.

9. Vasylkiv V., Pylypets M., Danylchenko L., Radyk D. Investigation of deflections of winded screw flights and auger billets in the processes of their manufacture. Scientific Journal of TNTU. 2021. Vol. 104, No. 4. P. 33–43. https://doi.org/10.33108/visnyk_tntu2021.04.033

10. Васильків В. В. Розвиток науково-прикладних основ розроблення технологій виробництва гвинтових і шнекових заготовок з використанням уніфікації: автореф. дис. на здобуття наук. ступеня д-ра техніч. наук: спец. 05.02.08. Львів, 2015. 48 с.

11. Васильків В. В., Радик Л. Д., Гевко І. Б.. Технологічні та конструктивні особливості виготовлення гвинтових заготовок з листового прокату. Наукові нотатки. 2004. Вип. 14. С. 12–18.

12. Технологічні основи формотворення різнопрофільних гвинтових заготовок / Гевко Б. М., Пилипець М. І., Васильків В. В., Радик Д. Л. Тернопіль: Вид-во ТДТУ ім. І. Пулюя, 2009. 457 с.

13. Гевко Ів., Клендій В. Технологічність конструкцій гвинтових секційних робочих органів. Вісник ТНТУ . 2015. № 3, т. 79. С. 148-155.

14. Гудь В.З. Механіко-технологічні основи розробки багатофункціональних секційних шнеків для зернового матеріалу: автореф. дис. на здобуття наук. ступеня д-ра техніч. наук: спец. 05.05.11. Тернопіль, 2021. 44 с.

15. Гнучкі гвинтові конвеєри: проектування, технологія виготовлення, експериментальні дослідження / Гевко І. Б. та ін. – Тернопіль: ФОП Паляниця В. А., 2019. 207 с.

16. Ляшук О. Л., Дячун А. Є., Клендій В. М., Третьяков О. Л. Дослідження силових параметрів процесу зміцнення гвинтових поверхонь робочих органів деформуючими пуансонами. Розвідка та розробка нафтових і газових родовищ. 2018. № 1 (66). С. 38-43.

17. Ляшук О. Л., Дячун А. Є., Третьяков О. Л. Дослідження деформації заготовки в процесі нарізання зовнішніх радіусних канавок пристроєм із декількома різцями. Перспективні технології та прилади. 2018. Вип. 12. С. 105-110.

18. Пилипець М. І., Васильків В. В., Радик Д. Л., Пилипець О. М. Передумови розроблення комбінованих операцій виготовлення гвинтових і шнекових заготовок методом обробки металів тиском. Перспективні технології та прилади. 2021. Вип. 18. С. 112–123.

19. Пилипець М. І. Науково-технологічні основи виробництва навивних заготовок деталей машин : автореф. дис. на здобуття наук. ступеня доктора техн. наук : спец. 05.03.01. Львів, 2002. 35 с.

20. Рогатинський Р.М., Гевко І.Б., Дячун А.Є. Науково-прикладні основи створення гвинтових транспортно-технологічних механізмів : монографія. Тернопіль : Вид-во ТНТУ імені Івана Пулюя, 2014. 280 с.

21. Технологічні основи формоутворення спеціальних профільних гвинтових деталей / Гевко Б.М. та ін. – Тернопіль: ТДТУ імені Івана Пулюя, 2008. 367 с.

Copyright (c) 2023 Ivan Нevko, Roman Leshchuk, Andriy Briksa, Oleg Stibailo, Serhiy Koval