DOI: https://doi.org/10.32515/2664-262X.2023.8(39).1.117-127

Experimental Studies of the Width of the Formed Swath of Cut Chicory Root Crops

Mykola Pidhurskyi, Mykola Boris, Hanna Tsyon

About the Authors

Mykola Pidhurskyi, Professor, Doctor in Technics (Doctor of Technic Sciences), Ternopil I. Puluj national technical university, Ternopil, Ukraine, e-mail: pidhurskyy@gmail.com, ORCID ID: 0000-0002-0218-8874

Mykola Boris, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Khmelnytskyi National University, Khmelnytskyi. Ukraine, ORCID ID: 0000-0003-0677-9505

Hanna Tsyon, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Ternopil I. Puluj national technical university, Ternopil, Ukraine, e-mail: tson_oleg_@ukr.net, ORCID ID: 0000-0002-8561-8023

Abstract

The search for effective technical solutions and scientific directions for substantiating the rational parameters of the working bodies of hedge cutting devices, which ensure an increase in the production of the strategically important for the leading sectors of the economy of Ukraine (energy - biofuel, food - coffee, pharmaceutical - inulin) culture, or root crops of chicory is a relevant and significant direction research, both for science and practice. The article provides the results of testing the adequacy of the developed analytical model, which functionally describes the process of unloading the cut stubble onto the surface of the harvested field by the transport element (screw conveyor) of the stubble cutting module of the root harvester depending on the parameters of the screw conveyor. Based on the processing of the experimental array of data, the regression equation of the change in the width of the formed swath of cut swath was obtained depending on the input parameters: the speed of the swath harvesting module, the swath yield and the rotation frequency of the screw conveyor. It was found that within the range of variation of the input factors, the speed of movement of the module from 1.6 to 2.4 m/s, the yield of chicory root crops from 120 to 180 t/ha and the rotation frequency of the screw conveyor from 40 to 100 rpm, the width of the formed roll of chopped the width of the swath is in the range from 0.5 to 1.4 m. The difference between the experimental and theoretical values of the width of the formed swath is within 5...10%. The obtained results of scientific research are a further step in the improvement of the methodology for optimizing the rational parameters of the working bodies of root-harvesting machines.

Keywords

root crops of chicory, process, cut scallions, remains of scallions, model, factors, parameters

Full Text:

PDF

References

1. Hevko, I.B., Rohatyns'kyj, R.M., Levkovych, M.H., Klendij, V.M. & Hupka, V.V. (2021). Strukturnyj syntez hal'mivnykh system z tekhniko-ekonomichnym obgruntuvanniam [Structural synthesis of braking systems with technical and economic justification]. Naukovi notatky : Mizhvuzivs'kyj zbirnyk  Scientific notes: interuniversity collection, Issue 71, 228-233 [in Ukrainian].

2. Kuznetsov Yu.M. & Skliarov R.A. (2004). Prohnozuvannia rozvytku tekhnichnykh system [Forecasting the development of technical systems]. Yu. M. Kuznetsova (Eds.). Kyiv : TOV «ZMOK». PP «HNOZIS» [in Ukrainian].

3. Mandryka, V. R. & Shlykova, V.H. (2013). Kerovanist' i stijkist' rukhu avtomobilia V klasu z systemoiu [Controllability and stability of the car in class B with the system]. Visnyk NTU "KhPI"  Bulletin of NTU "Khpi", № 31 (1004), 60-65 [in Ukrainian].

4. Odryn V.M. & Kartavov S.S. (1977). Morfolohycheskyj analyz system: Postroenye morfolohycheskykh matryts [Morphological analysis of systems: Construction of morphological matrices] . Kyiv : Naukova dumka [in Ukrainian].

5. Pavlenko, V.M. & Kryvoruchko, O.O. (2014). Suchasnyj stan rozvytku aktyvnykh pidvisok lehkovykh avtomobiliv [The current state of development of active suspensions of passenger cars]. Visnyk NTU "KhPI"  Bulletin of NTU "Khpi", № 9 (1052, 54-60 [in Ukrainian].

6. Hevko, B.M., Lutsiv, I.V, Hevko, I.B., Komar, R.V. & Dubyniak, T.S. (2019). Pruzhno-zapobizhni mufty: konstruktsii, rozrakhunok, doslidzhennia [Spring-safety couplings: designs, calculation, research]. Ternopil': FOP Palianytsia V. A. [in Ukrainian].

7. Rohatyns'kyj, R.M., Liashuk, O.L., Hevko, I.B., Khoroshun, R.V. & Bryksa, A.O. (2023). Model' obhonu avtomobilem na priamij trasi [A model of overtaking by a car on a straight track]. Increasing the reliability and efficiency of machines, processes and systems: V Mizhnarodnoi nauk.-prakt. konf. (19 -21 kvitnia 2023 r., Kropyvnyts'kyj)  (Pp. 17-20), Kropyvnyts'kyj [in Ukrainian].

8. Stend dlia doslidzhennia kharakterystyk pidvisky avtomobilia [A stand for researching the characteristics of a car's suspension]: pat. 148601 Ukraina: MPK G01N 17/00 (2021.01). № u202101835; zaiavl. 07.04.21; opubl. 26.08.21, Biul. № 34 [in Ukrainian].

9. Stend dlia doslidzhennia kharakterystyk pidvisky avtomobilia [Stand for researching the characteristics of the car suspension]: pat. 150771 Ukraina: MPK G01N 3/00, F16D 65/00. № u202106434; zaiavl. 15.11.21; opubl. 13.04. 22, Biul. № 15 [in Ukrainian].

10. Gysen B. L. J. & Janssen J. L. G. (2016). Active Electromagnetic Suspension System for Improved Vehicle Dynamics. IEEE Transactions On Vehicular Technology, 59, 3. Pp.1156 – 1163 [in English].

11. Liashuk, O., Hevko, I., Hud, V., Khoroshun, R., Hevko, B., Matviishyn, A. & Sipravska, M. (2022). Stands for car suspension research. Bulletin of Lviv National Environmental University. Agroengineering Research, No. 26, 93-103 [in English].

12. Martins, J. Esteves, F. P. da Silva, &Verdelho, P. (2015). Electromagnetics hybrid activepassive vehicle suspension system. Technical University of Lisbon. Lisbon, Portugal [in English].

13. Sokil, B., Lyashuk, O., Sokil, M., Vovk, Y., Lebid, I., Hevko, I., Levkovych, M., Khoroshun, R. & Matviyishyn, A. (2022). Methodology of Force Parameters Justification of the Controlled Steering Wheel Suspension. COMMUNICATIONS, Vol. 24, № 3, P. 247-258 [in English].

14. Mohammed Bello M., Babawuro A. Y. & Fatai S., (2015). Active suspension force control with electro-hydrolic actuator dynamics. ARPN Journal of Engineering and Applied Sciences, 10, 23, pp.17327 – 17331 [in English].

15. Popp, K. & Schiehlen, W. (2010). Ground vehicle dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 396 pp. [in English].

16. Rosli, R., Mailah, M. & Priyandoko, G. (2014). Active Suspension System for Passenger Vehicle using Active Force Control with Iterative Learning Algorithm. WSEAS Transactions on Systems and Control, 9, 2, pp.120 – 127 [in English].

17. Schramm, D., Hiller, M. & Bardini, R. (2014). Vehicle dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 396 pp. [in English].

18. Taghavifar, H. & Mardani, A. (2016). Off-road vehicle dynamics. Cham: Springer International Publishing [in English].

Citations

  1. Структурний синтез гальмівних систем з техніко-економічним обґрунтуванням / І.Б. Гевко та ін. Наукові нотатки: міжвуз. зб. 2021. Вип. 71. С. 228-233.
  2. Кузнецов Ю.М., Скляров Р.А. Прогнозування розвитку технічних систем ; під заг. ред. Ю. М. Кузнецова. К. : ТОВ «ЗМОК». ПП «ГНОЗІС», 2004. 323 с.
  3. Мандрика В.Р., Шликова В.Г. Керованість і стійкість руху автомобіля В класу з системою. Вісник НТУ "ХПІ". 2013. № 31 (1004). С. 60-65.
  4. Одрин В.М., Картавов С.С. Морфологический анализ систем: Построение морфологических матриц . К. : Наукова думка, 1977. 183 с.
  5. Павленко В.М., Криворучко О.О. Сучасний стан розвитку активних підвісок легкових автомобілів. Вісник НТУ "ХПІ". 2014. № 9 (1052). С. 54-60.
  6. Пружно-запобіжні муфти: конструкції, розрахунок, дослідження / Б.М. Гевко та ін. Тернопіль: ФОП Паляниця В. А., 2019. 200 с.
  7. Рогатинський Р.М. та ін. Модель обгону автомобілем на прямій трасі . Підвищення надійності і ефективності машин, процесів і систем : матеріали V Міжнародної наук.-практ. конф., 2023. (19 -21 квітня 2023 р.) . С. 17-20.
  8. Стенд для дослідження характеристик підвіски автомобіля: пат. 148601 Україна: МПК G01N 17/00 (2021.01). № u202101835; заявл. 07.04.21; опубл. 26.08.21, Бюл. № 34.
  9. Стенд для дослідження характеристик підвіски автомобіля: пат. 150771 Україна: МПК G01N 3/00, F16D 65/00. № u202106434; заявл. 15.11.21; опубл. 13.04. 22, Бюл. № 15.
  10. Gysen B. L. J., Janssen J. L. G. Active Electromagnetic Suspension System for Improved Vehicle Dynamics. IEEE Transactions On Vehicular Technology, 59, 3, pp.1156 – 1163 (2016)
  11. Liashuk O., Hevko I., Hud V., Khoroshun R., Hevko B., Matviishyn A., Sipravska M. Stands for car suspension research. Bulletin of Lviv National Environmental University. Agroengineering Research, No. 26 (2022). С 93-103.
  12. I. Martins, J. Esteves, F. P. da Silva, P. Verdelho, Electromagnetics hybrid activepassive vehicle suspension system. Technical University of Lisbon. Lisbon, Portugal . 2015.
  13. Methodology of Force Parameters Justification of the Controlled Steering Wheel Suspension. B. Sokil, O. Lyashuk, M. Sokil, Y. Vovk, I. Lebid, I. Hevko, M. Levkovych, R. Khoroshun, A. Matviyishyn. COMMUNICATIONS, 2022. Vol. 24, № 3, P. 247-258.
  14. Mohammed Bello M., Babawuro A. Y., Fatai S., Active suspension force control with electro-hydrolic actuator dynamics. ARPN Journal of Engineering and Applied Sciences. 10, 23, pp.17327 – 17331 (2015)
  15. Popp K., Schiehlen W. Ground vehicle dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. 396 pp.
  16. Rosli R., Mailah M., Priyandoko G. Active Suspension System for Passenger Vehicle using Active Force Control with Iterative Learning Algorithm. WSEAS Transactions on Systems and Control. 9, 2, pp.120 – 127 (2014)
  17. Schramm D., Hiller M., Bardini R. Vehicle dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. 396 pp.
  18. Taghavifar H., Mardani A. Off-road vehicle dynamics. Cham: Springer International Publishing, 2016. 396 рp.
Copyright (c) 2023 Mykola Pidhurskyi, Mykola Boris, Hanna Tsyon