DOI: https://doi.org/10.32515/2664-262X.2023.8(39).1.153-164
Synthesis of Suspension of Motor Vehicles
About the Authors
Ivan Hevko, Professor, Doctor in Technics (Doctor of Technic Sciences), Ternopil National Technical University named after Ivan Pulyu, Ternopil, Ukraine, Україна, e-mail: gevkoivan1@ukr.net, ORCID ID: 0000-0001-5170-0857
Oleg Lyashuk, Professor, Doctor in Technics (Doctor of Technic Sciences), Ternopil National Technical University named after Ivan Pulyu, Ternopil, Ukraine, e-mail: oleglashuk@ukr.net, ORCID ID: 0000-0003-4881-8568
Roman Rohatynskyi, Professor, Doctor in Technics (Doctor of Technic Sciences), Ternopil National Technical University named after Ivan Pulyu, Ternopil, Ukraine, ORCID ID: 0000-0001-8536-4599
Anatolii Matviishyn, Associate Professor, PhD in Economics(Candidate of Economic Sciences), Ternopil National Technical University named after Ivan Pulyu, Ternopil, Ukraine, e-mail: anatolij.matviisin@gmail.com, ORCID ID: 0000-0002-3879-1392
Roman Khoroshun, Assistant, Ternopil National Technical University named after Ivan Pulyu, Ternopil, Ukraine, e-mail: Roman_086@ukr.net, ORCID ID: 0000-0002-1862-7640
Abstract
In order to create progressive structures of car shock absorbers that would provide increased driving comfort and safety due to the absorption of shocks and vibrations that occur while driving on the road, we carried out their structural-schematic synthesis by the method of hierarchical groups with the help of morphological analysis. For this, the method of hierarchical grouping using morphological analysis was used and six basic types of suspension with original types of shock absorbers (hydraulic, hydropneumatic, pneumatic, magnetofluid, hydrovacuum and pneumovacuum type) were obtained. At the same time, the following basic morphological design features and elements were highlighted: a) depreciation principle, which includes the following features: type of depreciation principle; type of cushioning substance; hydraulic fluid flow holes in the piston (their area and number); number of cameras; location of cameras; the number of electromagnetic coils; b) a type of elastic element consisting of two main features, namely a spring, the structural features of which include the following features: construction; geometric section; rigidity; directionality; number; Location; and a pneumatic cylinder, the structural features of which include the following: geometric parameters; manageability (adaptability); construction; filling; rigidity; c) damping element, which includes the following features: location; number; material; combination; structural parameters.
The total number of basic generated vehicle suspension options will be 167 options, and the number of base options depending on the type of damping principle will range from 96 to 148 options. Thus, when generating the constructions of individual types of suspension of a motor vehicle with the main types of designed shock absorbers, the design features and elements from the morphological table were divided according to each type of shock absorbers, which made it possible to generate the corresponding number of their basic variants. In particular, the number of basic variants of the hydraulic type car suspension is 130 units, hydropneumatic type - 148 units, pneumatic type - 96 units, magnetofluid type - 133 units, hydrovacuum type - 130 units and pneumovacuum type - 96 units.
USING this synthesis method, we developed and researched structures of hydropneumatic shock absorbers with an active pneumatic cylinder and damping elements, which, compared to traditional racks, had high adaptability and vibration resistance. It was experimentally proven that the developed shock absorbers with an active pneumatic cylinder and damping elements act as vibration dampers to a large extent.
Keywords
structural and schematic synthesis, adaptive suspension, motor vehicle, structural features of elements, morphological analysis
Full Text:
PDF
References
1. Hevko, I.B., Rohatyns'kyj, R.M., Levkovych, M.H., Klendij, V.M. & Hupka, V.V. (2021). Strukturnyj syntez hal'mivnykh system z tekhniko-ekonomichnym obgruntuvanniam [Structural synthesis of braking systems with technical and economic justification]. Naukovi notatky : Mizhvuzivs'kyj zbirnyk Scientific notes: interuniversity collection, Issue 71, 228-233 [in Ukrainian].
2. Kuznetsov Yu.M. & Skliarov R.A. (2004). Prohnozuvannia rozvytku tekhnichnykh system [Forecasting the development of technical systems]. Yu. M. Kuznetsova (Eds.). Kyiv : TOV «ZMOK». PP «HNOZIS» [in Ukrainian].
3. Mandryka, V. R. & Shlykova, V.H. (2013). Kerovanist' i stijkist' rukhu avtomobilia V klasu z systemoiu [Controllability and stability of the car in class B with the system]. Visnyk NTU "KhPI" Bulletin of NTU "Khpi", № 31 (1004), 60-65 [in Ukrainian].
4. Odryn V.M. & Kartavov S.S. (1977). Morfolohycheskyj analyz system: Postroenye morfolohycheskykh matryts [Morphological analysis of systems: Construction of morphological matrices] . Kyiv : Naukova dumka [in Ukrainian].
5. Pavlenko, V.M. & Kryvoruchko, O.O. (2014). Suchasnyj stan rozvytku aktyvnykh pidvisok lehkovykh avtomobiliv [The current state of development of active suspensions of passenger cars]. Visnyk NTU "KhPI" Bulletin of NTU "Khpi", № 9 (1052, 54-60 [in Ukrainian].
6. Hevko, B.M., Lutsiv, I.V, Hevko, I.B., Komar, R.V. & Dubyniak, T.S. (2019). Pruzhno-zapobizhni mufty: konstruktsii, rozrakhunok, doslidzhennia [Spring-safety couplings: designs, calculation, research]. Ternopil': FOP Palianytsia V. A. [in Ukrainian].
7. Rohatyns'kyj, R.M., Liashuk, O.L., Hevko, I.B., Khoroshun, R.V. & Bryksa, A.O. (2023). Model' obhonu avtomobilem na priamij trasi [A model of overtaking by a car on a straight track]. Increasing the reliability and efficiency of machines, processes and systems: V Mizhnarodnoi nauk.-prakt. konf. (19 -21 kvitnia 2023 r., Kropyvnyts'kyj) (Pp. 17-20), Kropyvnyts'kyj [in Ukrainian].
8. Stend dlia doslidzhennia kharakterystyk pidvisky avtomobilia [A stand for researching the characteristics of a car's suspension]: pat. 148601 Ukraina: MPK G01N 17/00 (2021.01). № u202101835; zaiavl. 07.04.21; opubl. 26.08.21, Biul. № 34 [in Ukrainian].
9. Stend dlia doslidzhennia kharakterystyk pidvisky avtomobilia [Stand for researching the characteristics of the car suspension]: pat. 150771 Ukraina: MPK G01N 3/00, F16D 65/00. № u202106434; zaiavl. 15.11.21; opubl. 13.04. 22, Biul. № 15 [in Ukrainian].
10. Gysen B. L. J. & Janssen J. L. G. (2016). Active Electromagnetic Suspension System for Improved Vehicle Dynamics. IEEE Transactions On Vehicular Technology, 59, 3. Pp.1156 – 1163 [in English].
11. Liashuk, O., Hevko, I., Hud, V., Khoroshun, R., Hevko, B., Matviishyn, A. & Sipravska, M. (2022). Stands for car suspension research. Bulletin of Lviv National Environmental University. Agroengineering Research, No. 26, 93-103 [in English].
12. Martins, J. Esteves, F. P. da Silva, &Verdelho, P. (2015). Electromagnetics hybrid activepassive vehicle suspension system. Technical University of Lisbon. Lisbon, Portugal [in English].
13. Sokil, B., Lyashuk, O., Sokil, M., Vovk, Y., Lebid, I., Hevko, I., Levkovych, M., Khoroshun, R. & Matviyishyn, A. (2022). Methodology of Force Parameters Justification of the Controlled Steering Wheel Suspension. COMMUNICATIONS, Vol. 24, № 3, P. 247-258 [in English].
14. Mohammed Bello M., Babawuro A. Y. & Fatai S., (2015). Active suspension force control with electro-hydrolic actuator dynamics. ARPN Journal of Engineering and Applied Sciences, 10, 23, pp.17327 – 17331 [in English].
15. Popp, K. & Schiehlen, W. (2010). Ground vehicle dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 396 pp. [in English].
16. Rosli, R., Mailah, M. & Priyandoko, G. (2014). Active Suspension System for Passenger Vehicle using Active Force Control with Iterative Learning Algorithm. WSEAS Transactions on Systems and Control, 9, 2, pp.120 – 127 [in English].
17. Schramm, D., Hiller, M. & Bardini, R. (2014). Vehicle dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 396 pp. [in English].
18. Taghavifar, H. & Mardani, A. (2016). Off-road vehicle dynamics. Cham: Springer International Publishing [in English].
Citations
- Структурний синтез гальмівних систем з техніко-економічним обґрунтуванням / І.Б. Гевко та ін. Наукові нотатки: міжвуз. зб. 2021. Вип. 71. С. 228-233.
- Кузнецов Ю.М., Скляров Р.А. Прогнозування розвитку технічних систем ; під заг. ред. Ю. М. Кузнецова. К. : ТОВ «ЗМОК». ПП «ГНОЗІС», 2004. 323 с.
- Мандрика В.Р., Шликова В.Г. Керованість і стійкість руху автомобіля В класу з системою. Вісник НТУ "ХПІ". 2013. № 31 (1004). С. 60-65.
- Одрин В.М., Картавов С.С. Морфологический анализ систем: Построение морфологических матриц . К. : Наукова думка, 1977. 183 с.
- Павленко В.М., Криворучко О.О. Сучасний стан розвитку активних підвісок легкових автомобілів. Вісник НТУ "ХПІ". 2014. № 9 (1052). С. 54-60.
- Пружно-запобіжні муфти: конструкції, розрахунок, дослідження / Б.М. Гевко та ін. Тернопіль: ФОП Паляниця В. А., 2019. 200 с.
- Рогатинський Р.М. та ін. Модель обгону автомобілем на прямій трасі . Підвищення надійності і ефективності машин, процесів і систем : матеріали V Міжнародної наук.-практ. конф., 2023. (19 -21 квітня 2023 р.) . С. 17-20.
- Стенд для дослідження характеристик підвіски автомобіля: пат. 148601 Україна: МПК G01N 17/00 (2021.01). № u202101835; заявл. 07.04.21; опубл. 26.08.21, Бюл. № 34.
- Стенд для дослідження характеристик підвіски автомобіля: пат. 150771 Україна: МПК G01N 3/00, F16D 65/00. № u202106434; заявл. 15.11.21; опубл. 13.04. 22, Бюл. № 15.
- Gysen B. L. J., Janssen J. L. G. Active Electromagnetic Suspension System for Improved Vehicle Dynamics. IEEE Transactions On Vehicular Technology, 59, 3, pp.1156 – 1163 (2016)
- Liashuk O., Hevko I., Hud V., Khoroshun R., Hevko B., Matviishyn A., Sipravska M. Stands for car suspension research. Bulletin of Lviv National Environmental University. Agroengineering Research, No. 26 (2022). С 93-103.
- I. Martins, J. Esteves, F. P. da Silva, P. Verdelho, Electromagnetics hybrid activepassive vehicle suspension system. Technical University of Lisbon. Lisbon, Portugal . 2015.
- Methodology of Force Parameters Justification of the Controlled Steering Wheel Suspension. B. Sokil, O. Lyashuk, M. Sokil, Y. Vovk, I. Lebid, I. Hevko, M. Levkovych, R. Khoroshun, A. Matviyishyn. COMMUNICATIONS, 2022. Vol. 24, № 3, P. 247-258.
- Mohammed Bello M., Babawuro A. Y., Fatai S., Active suspension force control with electro-hydrolic actuator dynamics. ARPN Journal of Engineering and Applied Sciences. 10, 23, pp.17327 – 17331 (2015)
- Popp K., Schiehlen W. Ground vehicle dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. 396 pp.
- Rosli R., Mailah M., Priyandoko G. Active Suspension System for Passenger Vehicle using Active Force Control with Iterative Learning Algorithm. WSEAS Transactions on Systems and Control. 9, 2, pp.120 – 127 (2014)
- Schramm D., Hiller M., Bardini R. Vehicle dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. 396 pp.
- Taghavifar H., Mardani A. Off-road vehicle dynamics. Cham: Springer International Publishing, 2016. 396 рp.
Copyright (c) 2023 Ivan Hevko, Oleg Lyashuk, Roman Rohatynskyi, Anatolii Matviishyn, Roman Khoroshun
Synthesis of Suspension of Motor Vehicles
About the Authors
Ivan Hevko, Professor, Doctor in Technics (Doctor of Technic Sciences), Ternopil National Technical University named after Ivan Pulyu, Ternopil, Ukraine, Україна, e-mail: gevkoivan1@ukr.net, ORCID ID: 0000-0001-5170-0857
Oleg Lyashuk, Professor, Doctor in Technics (Doctor of Technic Sciences), Ternopil National Technical University named after Ivan Pulyu, Ternopil, Ukraine, e-mail: oleglashuk@ukr.net, ORCID ID: 0000-0003-4881-8568
Roman Rohatynskyi, Professor, Doctor in Technics (Doctor of Technic Sciences), Ternopil National Technical University named after Ivan Pulyu, Ternopil, Ukraine, ORCID ID: 0000-0001-8536-4599
Anatolii Matviishyn, Associate Professor, PhD in Economics(Candidate of Economic Sciences), Ternopil National Technical University named after Ivan Pulyu, Ternopil, Ukraine, e-mail: anatolij.matviisin@gmail.com, ORCID ID: 0000-0002-3879-1392
Roman Khoroshun, Assistant, Ternopil National Technical University named after Ivan Pulyu, Ternopil, Ukraine, e-mail: Roman_086@ukr.net, ORCID ID: 0000-0002-1862-7640
Abstract
Keywords
Full Text:
PDFReferences
1. Hevko, I.B., Rohatyns'kyj, R.M., Levkovych, M.H., Klendij, V.M. & Hupka, V.V. (2021). Strukturnyj syntez hal'mivnykh system z tekhniko-ekonomichnym obgruntuvanniam [Structural synthesis of braking systems with technical and economic justification]. Naukovi notatky : Mizhvuzivs'kyj zbirnyk Scientific notes: interuniversity collection, Issue 71, 228-233 [in Ukrainian].
2. Kuznetsov Yu.M. & Skliarov R.A. (2004). Prohnozuvannia rozvytku tekhnichnykh system [Forecasting the development of technical systems]. Yu. M. Kuznetsova (Eds.). Kyiv : TOV «ZMOK». PP «HNOZIS» [in Ukrainian].
3. Mandryka, V. R. & Shlykova, V.H. (2013). Kerovanist' i stijkist' rukhu avtomobilia V klasu z systemoiu [Controllability and stability of the car in class B with the system]. Visnyk NTU "KhPI" Bulletin of NTU "Khpi", № 31 (1004), 60-65 [in Ukrainian].
4. Odryn V.M. & Kartavov S.S. (1977). Morfolohycheskyj analyz system: Postroenye morfolohycheskykh matryts [Morphological analysis of systems: Construction of morphological matrices] . Kyiv : Naukova dumka [in Ukrainian].
5. Pavlenko, V.M. & Kryvoruchko, O.O. (2014). Suchasnyj stan rozvytku aktyvnykh pidvisok lehkovykh avtomobiliv [The current state of development of active suspensions of passenger cars]. Visnyk NTU "KhPI" Bulletin of NTU "Khpi", № 9 (1052, 54-60 [in Ukrainian].
6. Hevko, B.M., Lutsiv, I.V, Hevko, I.B., Komar, R.V. & Dubyniak, T.S. (2019). Pruzhno-zapobizhni mufty: konstruktsii, rozrakhunok, doslidzhennia [Spring-safety couplings: designs, calculation, research]. Ternopil': FOP Palianytsia V. A. [in Ukrainian].
7. Rohatyns'kyj, R.M., Liashuk, O.L., Hevko, I.B., Khoroshun, R.V. & Bryksa, A.O. (2023). Model' obhonu avtomobilem na priamij trasi [A model of overtaking by a car on a straight track]. Increasing the reliability and efficiency of machines, processes and systems: V Mizhnarodnoi nauk.-prakt. konf. (19 -21 kvitnia 2023 r., Kropyvnyts'kyj) (Pp. 17-20), Kropyvnyts'kyj [in Ukrainian].
8. Stend dlia doslidzhennia kharakterystyk pidvisky avtomobilia [A stand for researching the characteristics of a car's suspension]: pat. 148601 Ukraina: MPK G01N 17/00 (2021.01). № u202101835; zaiavl. 07.04.21; opubl. 26.08.21, Biul. № 34 [in Ukrainian].
9. Stend dlia doslidzhennia kharakterystyk pidvisky avtomobilia [Stand for researching the characteristics of the car suspension]: pat. 150771 Ukraina: MPK G01N 3/00, F16D 65/00. № u202106434; zaiavl. 15.11.21; opubl. 13.04. 22, Biul. № 15 [in Ukrainian].
10. Gysen B. L. J. & Janssen J. L. G. (2016). Active Electromagnetic Suspension System for Improved Vehicle Dynamics. IEEE Transactions On Vehicular Technology, 59, 3. Pp.1156 – 1163 [in English].
11. Liashuk, O., Hevko, I., Hud, V., Khoroshun, R., Hevko, B., Matviishyn, A. & Sipravska, M. (2022). Stands for car suspension research. Bulletin of Lviv National Environmental University. Agroengineering Research, No. 26, 93-103 [in English].
12. Martins, J. Esteves, F. P. da Silva, &Verdelho, P. (2015). Electromagnetics hybrid activepassive vehicle suspension system. Technical University of Lisbon. Lisbon, Portugal [in English].
13. Sokil, B., Lyashuk, O., Sokil, M., Vovk, Y., Lebid, I., Hevko, I., Levkovych, M., Khoroshun, R. & Matviyishyn, A. (2022). Methodology of Force Parameters Justification of the Controlled Steering Wheel Suspension. COMMUNICATIONS, Vol. 24, № 3, P. 247-258 [in English].
14. Mohammed Bello M., Babawuro A. Y. & Fatai S., (2015). Active suspension force control with electro-hydrolic actuator dynamics. ARPN Journal of Engineering and Applied Sciences, 10, 23, pp.17327 – 17331 [in English].
15. Popp, K. & Schiehlen, W. (2010). Ground vehicle dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 396 pp. [in English].
16. Rosli, R., Mailah, M. & Priyandoko, G. (2014). Active Suspension System for Passenger Vehicle using Active Force Control with Iterative Learning Algorithm. WSEAS Transactions on Systems and Control, 9, 2, pp.120 – 127 [in English].
17. Schramm, D., Hiller, M. & Bardini, R. (2014). Vehicle dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 396 pp. [in English].
18. Taghavifar, H. & Mardani, A. (2016). Off-road vehicle dynamics. Cham: Springer International Publishing [in English].
Citations
- Структурний синтез гальмівних систем з техніко-економічним обґрунтуванням / І.Б. Гевко та ін. Наукові нотатки: міжвуз. зб. 2021. Вип. 71. С. 228-233.
- Кузнецов Ю.М., Скляров Р.А. Прогнозування розвитку технічних систем ; під заг. ред. Ю. М. Кузнецова. К. : ТОВ «ЗМОК». ПП «ГНОЗІС», 2004. 323 с.
- Мандрика В.Р., Шликова В.Г. Керованість і стійкість руху автомобіля В класу з системою. Вісник НТУ "ХПІ". 2013. № 31 (1004). С. 60-65.
- Одрин В.М., Картавов С.С. Морфологический анализ систем: Построение морфологических матриц . К. : Наукова думка, 1977. 183 с.
- Павленко В.М., Криворучко О.О. Сучасний стан розвитку активних підвісок легкових автомобілів. Вісник НТУ "ХПІ". 2014. № 9 (1052). С. 54-60.
- Пружно-запобіжні муфти: конструкції, розрахунок, дослідження / Б.М. Гевко та ін. Тернопіль: ФОП Паляниця В. А., 2019. 200 с.
- Рогатинський Р.М. та ін. Модель обгону автомобілем на прямій трасі . Підвищення надійності і ефективності машин, процесів і систем : матеріали V Міжнародної наук.-практ. конф., 2023. (19 -21 квітня 2023 р.) . С. 17-20.
- Стенд для дослідження характеристик підвіски автомобіля: пат. 148601 Україна: МПК G01N 17/00 (2021.01). № u202101835; заявл. 07.04.21; опубл. 26.08.21, Бюл. № 34.
- Стенд для дослідження характеристик підвіски автомобіля: пат. 150771 Україна: МПК G01N 3/00, F16D 65/00. № u202106434; заявл. 15.11.21; опубл. 13.04. 22, Бюл. № 15.
- Gysen B. L. J., Janssen J. L. G. Active Electromagnetic Suspension System for Improved Vehicle Dynamics. IEEE Transactions On Vehicular Technology, 59, 3, pp.1156 – 1163 (2016)
- Liashuk O., Hevko I., Hud V., Khoroshun R., Hevko B., Matviishyn A., Sipravska M. Stands for car suspension research. Bulletin of Lviv National Environmental University. Agroengineering Research, No. 26 (2022). С 93-103.
- I. Martins, J. Esteves, F. P. da Silva, P. Verdelho, Electromagnetics hybrid activepassive vehicle suspension system. Technical University of Lisbon. Lisbon, Portugal . 2015.
- Methodology of Force Parameters Justification of the Controlled Steering Wheel Suspension. B. Sokil, O. Lyashuk, M. Sokil, Y. Vovk, I. Lebid, I. Hevko, M. Levkovych, R. Khoroshun, A. Matviyishyn. COMMUNICATIONS, 2022. Vol. 24, № 3, P. 247-258.
- Mohammed Bello M., Babawuro A. Y., Fatai S., Active suspension force control with electro-hydrolic actuator dynamics. ARPN Journal of Engineering and Applied Sciences. 10, 23, pp.17327 – 17331 (2015)
- Popp K., Schiehlen W. Ground vehicle dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. 396 pp.
- Rosli R., Mailah M., Priyandoko G. Active Suspension System for Passenger Vehicle using Active Force Control with Iterative Learning Algorithm. WSEAS Transactions on Systems and Control. 9, 2, pp.120 – 127 (2014)
- Schramm D., Hiller M., Bardini R. Vehicle dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. 396 pp.
- Taghavifar H., Mardani A. Off-road vehicle dynamics. Cham: Springer International Publishing, 2016. 396 рp.