DOI: https://doi.org/10.32515/2664-262X.2023.7(38).2.222-230

Justification of the Criterion of Stability of the Traffic Flow at the Sections of the Road Network

Andrii Кravtsov, Tetiana Larina, Oleksiy Goryayinov, Anna Kozenok, Tetiana Gorodetska, Inna Babych

About the Authors

Andrii Кravtsov, Associate Professor, PhD in Technics (Candidate of Technics Sciences), State Biotechnological University, Kharkiv, Ukraine, e-mail: kravcov_84@ukr.net, ORCID ID: 0000-0003-3103-6594

Tetiana Larina, Professor, Doctor in Economics (Doctor of Economic Sciences), State Biotechnological University, Kharkiv, Ukraine, ORCID ID: 0000-0003-3149-8430

Oleksiy Goryayinov, Associate Professor, PhD in Technics (Candidate of Technics Sciences), State Biotechnological University, Kharkiv, Ukraine, e-mail: goryainov@ukr.net, ORCID ID: 0000-0002-5967-2835

Anna Kozenok, Associate Professor, PhD in Technics (Candidate of Technics Sciences), State Biotechnological University, Kharkiv, Ukraine, e-mail: anna13kozenok@gmail.comm, ORCID ID: 0000-0002-3152-2253

Tetiana Gorodetska, Associate Professor, PhD in Economяйфяics (Candidate of Economic Sciences), , State Biotechnological University, Kharkiv, Ukraine, ORCID ID: 0000-0001-7350-2624

Inna Babych, Senior Lecturer, State Biotechnological University, Kharkiv, Ukraine, e-mail: ines.babochka@gmail.com, ORCID ID: 0009-0006-2158-0261

Abstract

The work considers the justification and obtaining the criteria for assessing the stability of the traffic flow on various sections of the street and road network under the influence of external disturbances. Analysis of the criterion allows to formulate the parameters on which stability depends. As follows from the expressions by which the criterion is calculated, the stability of the traffic flow is affected by the density and intensity of the traffic flow. They must be calculated for each section of the road network or highway in the form of amplification factors. The time constants depend on the qualification and psychophysiological properties of the driver, the degree of his fatigue, the dynamic properties of the car and road conditions. It is shown that when the value of the criterion is equal to one, the transport flow functions on the verge of loss of stability. If the value of the criterion is less than one, the traffic flow has lost its stability, traffic stops - traffic jam. If the value of the criterion is greater than one, the transport flow is stable, i.e. functions without delays and traffic jams. The larger the value of the criterion, the greater the margin of stability. Based on the obtained results of theoretical studies, the robustness of the traffic flow is defined. The robustness of the traffic flow (English robust range) is a dimensionless value that characterizes the range of stable movement of vehicles on sections of the road network, taking into account its infrastructure, density and intensity of traffic without delays and traffic jams. It is shown that the developed criterion of robustness must be applied in the analysis of the road network for the occurrence of delays during traffic and traffic jams, as well as in the design of a new urban road network. The obtained result differs from the known ones given in the review of literary sources in that it allows to determine the limits of the loss of stability - the formation of traffic jams - through modeling. Determining the limit values of traffic flow density and intensity, their gradients, accounting for multi-lane traffic will allow developing measures to prevent traffic jams.

Keywords

traffic flow, modeling, dynamic model, density gradient, speed gradient, amplification factor, time constant, stability criterion, traffic flow robustness criterion

Full Text:

PDF

References

1. Vojtov, V.A., Kravtsov, A.H., Karnaukh, M.V., Horyayinov, O.M., Kozenok, A.S. & Babych, I.A. (2023) Otsinka erhonomichnoyi stiykosti transportnoho potoku na dilʹnytsyakh dorozhnʹoyi merezhi. Identyfikatsiya matematychnoyi modeli [Identification of a mathematical model]. Tsentralʹnoukrayinsʹkyy naukovyy visnyk. Tekhnichni nauky – Central Ukrainian scientific bulletin. Technical sciences, Issue 7(38), 236-245 [in Ukrainuan].

2. Kessels, F. (2019). Introduction to Traffic Flow Modelling. In: Traffic Flow Modelling. EURO Advanced Tutorials on Operational Research. Springer, Cham. https://doi.org/10.1007/978-3-319-78695-7_1 [in English].

3. Hoogendoorn, S. & Bovy, P. H. L. (2001) State-of-the-art of vehicular traffic flow modeling. Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems and Control Engineering, 215:283-303. DOI:10.1243/0959651011541120 [in English].

4. Zhu, Y., Wu, Q. & Xiao, N. (2022) Research on highway traffic flow prediction model and decision-making method. Sci Rep, 12, 19919. https://doi.org/10.1038/s41598-022-24469-y [in English].

5. Marcello Montanino, Julien Monteil, Vincenzo Punzo. (2021). From homogeneous to heterogeneous traffic flows: Lp String stability under uncertain model parameters. Transportation Research Part B: Methodological, Volume 146, Pages 136-154. https://doi.org/10.1016/j.trb.2021.01.009 [in English].

6. Saeed Mohammadian, Zuduo Zheng, Md. Mazharul Haque & Ashish Bhaskar. (2021). Performance of continuum models for realworld traffic flows: Comprehensive benchmarking. Transportation Research Part B: Methodological, Vol. 147, Pp. 132-167 https://doi.org/10.1016/j.trb.2021.03.007 [in English].

7. Jiping Xing, Wei Wu, Qixiu Cheng & Ronghui Liu. (2022). Traffic state estimation of urban road networks by multi-source data fusion: Review and new insights. Physica A: Statistical Mechanics and its Applications, Vol. 595, 1, 127079. https://doi.org/10.1016/j.physa.2022.127079 [in English].

8. Huk, V.I. & Shkodovsʹkyy, Yu.M. (2009). Transportni potoky: teoriya ta yikh zastosuvannya v urbanistytsi [Transport flows: theory and their application in urbanism]. Kharkiv: Zoloti storinky [in Ukrainian].

9. Huk, V.I. & Zaporozhtseva, O.V. (2010). Vzayemozv'yazok intensyvnosti, shvydkosti i shchilʹnosti transportnykh potokiv na bahatosmuhovykh avtomahistralyakh [Interrelationship of intensity, speed and density of traffic flows on multi-lane highways]. Vestnyk KHNADU: sb. nauch. tr. – Herald of the KhNARU, Issue 50, 69– 73 [in Ukrainian].

10. Zaporozhtseva, Ye.V. (2013). Raspredeleniye zaderzhek avtomobiley na avtomogistralyakh [Distribution of vehicle delays on highways.]. Vestnik KHNADU – Herald of the KhNARU, Issue.61-62, 102 – 105 [in Ukrainian].

11. Zhdanov, V.L. (2008). Analiz informativnogo priznaka yemkosti transportnogo potoka kak kriteriya otsenki urovnya yego integral'noy opasnosti [Analysis of the informative sign of the capacity of the transport flow as a criterion for assessing the level of integral danger]. Vestnik KuzGTU, Avtomobil'nyy transport – Herald of KuzGTU. Automobile transport [in Ukrainian].

12. Jie Sun, Zuduo Zheng & Jian Sun. (2020). The relationship between car following string instability and traffic oscillations in finite-sized platoons and its use in easing congestion via connected and automated vehicles with IDM based controller. Transportation Research Part B: Methodological, Vol. 142, Pp. 58-83 . Retrieved from https://doi.org/10.1016/j.trb.2020.10.004 [in English].

13. Kieran Kalair & Colm Connaughton. (2021). Anomaly detection and classification in traffic flow data from fluctuations in the flow–density relationship. Transportation Research Part C: Emerging Technologies, Vol. 127, 103178. https://doi.org/10.1016/j.trc.2021.103178 [in English].

14. Smirnova, M.N., Bogdanova, A.I., Zhu, Z.J., Manenkova, A.S. & Smirnov, N.N. (2014). Matematicheskaya model' avtotransportnykh potokov s elementami vyazkouprugosti [Mathematical model of motor vehicle flows with viscoelasticity elements]. Matem. modelirovaniye – Math. modeling, Vol. 26, 7, 54–64 [in Ukrainian].

15. Geng Zhang, Yu Zhang, Dong-bo Pan & Chun-yan Sang. (2019). Study on the interval integration effect of vehicle’s self-delayed velocity on traffic stability in micro traffic modeling. Physica A: Statistical Mechanics and its Applications, Vol. 533, 1, 121941. https://doi.org/10.1016/ j.physa.2019.121941 [in English].

16. Mykolaiets, D. & Klen, K. (2020). Fundamentals of the automatic control theory. Calculation work. Kyiv : Igor Sikorsky, Kyiv Polytechnic Institute. Retrieved from https://ela.kpi.ua/handle/123456789/38282 [in English].

17. Isidori, A. (2009). Control Theory for Automation: Fundamentals. Springer Handbooks book series (SHB) , pp. 147-172. Retrieved from https://link.springer.com/chapter/10.1007/978-3-540-78831-7_9 [in English].

18. Vojtov, V., Kutiy, О., Berezhnaja, N., Karnaukh, M. & Bilyaeva, O. (2019). Modeling of reliability of logistic systems of urban freight transportation taking into account street congestion. Eastern-European Journal of Enterprise Technologies, Vol. 4, no. 3 (100), рр. 15-21 [in English].

19. Muzylyov, D., Shramenko, N. & Karnaukh, M. (2021). Choice of Carrier Behavior Strategy According to Industry 4.0. In: Ivanov V., Trojanowska J., Pavlenko I., Zajac J., Peraković D. (eds) Advances in Design, Simulation and Manufacturing IV. DSMIE 2021. Lecture Notes in Mechanical Engineering. Springer, Cham [in English].

Citations

  1. Оцінка ергономічної стійкості транспортного потоку на дільницях дорожньої мережі. Ідентифікація математичної моделі. / В.А. Войтов та ін. Центральноукраїнський науковий вісник. Технічні науки. 2023. Вип. 7(38). С. 236-245
  2. Kessels, F. (2019). Introduction to Traffic Flow Modelling. In: Traffic Flow Modelling. EURO Advanced Tutorials on Operational Research. Springer, Cham. https://doi.org/10.1007/978-3-319-78695-7_1
  3. Hoogendoorn S., Bovy P. H. L. State-of-the-art of vehicular traffic flow modeling. Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems and Control Engineering. 2001. 215:283-303. DOI:10.1243/0959651011541120
  4. Zhu, Y., Wu, Q. & Xiao, N. Research on highway traffic flow prediction model and decision-making method. Sci Rep . 2022. 12, 19919. https://doi.org/10.1038/s41598-022-24469-y
  5. Marcello Montanino, Julien Monteil, Vincenzo Punzo. From homogeneous to heterogeneous traffic flows: Lp String stability under uncertain model parameters. Transportation Research Part B: Methodological. 2021. Vol. 146. P. 136-154. https://doi.org/10.1016/j.trb.2021.01.009
  6. Saeed Mohammadian, Zuduo Zheng, Md. Mazharul Haque, Ashish Bhaskar. Performance of continuum models for realworld traffic flows: Comprehensive benchmarking. Transportation Research Part B: Methodological. 2021. Vol. 147. P. 132-167. https://doi.org/10.1016/j.trb.2021.03.007
  7. Jiping Xing, Wei Wu, Qixiu Cheng, Ronghui Liu. Traffic state estimation of urban road networks by multi-source data fusion: Review and new insights. Physica A: Statistical Mechanics and its Applications. 2022. Vol. 595. 1. 127079. https://doi.org/10.1016/j.physa.2022.127079
  8. Гук В.І., Шкодовський Ю.М. Транспортні потоки: теорія та їх застосування в урбаністиці: монографія. Х.: Золоті сторінки, 2009. 232 с.
  9. Гук В.І., Запорожцева О.В. Взаємозв’язок інтенсивності, швидкості і щільності транспортних потоків на багатосмугових автомагістралях. Вестник ХНАДУ: сб. науч. тр. 2010. Вып. 50. С. 69– 73.
  10. Запорожцева Е.В. Распределение задержек автомобилей на автомогистралях. Вестник ХНАДУ. 2013. Вып.61-62. С. 102 – 105.
  11. Жданов В.Л. Анализ информативного признака емкости транспортного потока как критерия оценки уровня его интегральной опасности. Вестник КузГТУ. Автомобильный транспорт. 2008. С. 12 – 17.
  12. Jie Sun, Zuduo Zheng, JianSun. The relationship between car following string instability and traffic oscillations in finite-sized platoons and its use in easing congestion via connected and automated vehicles with IDM based controller. Transportation Research Part B: Methodological. 2020. Vol. 142. P. 58-83 https://doi.org/10.1016/j.trb.2020.10.004 .
  13. Kieran Kalair, Colm Connaughton. Anomaly detection and classification in traffic flow data from fluctuations in the flow–density relationship. Transportation Research Part C: Emerging Technologies. 2021. Vol. 127. 103178. https://doi.org/10.1016/j.trc.2021.103178.
  14. Смирнова М.Н., А. И. Богданова А.И., Zhu Z.J., Маненкова А.С., Смирнов Н.Н. Математическая модель автотранспортных потоков с элементами вязкоупругости. Матем. моделирование. 2014. Т.26. № 7. С. 54–64
  15. Geng Zhang, Yu Zhang, Dong-bo Pan, Chun-yan Sang. Study on the interval integration effect of vehicle’s self-delayed velocity on traffic stability in micro traffic modeling. Physica A: Statistical Mechanics and its Applications. 2019. Vol. 533. 1. 121941. https://doi.org/10.1016/j.physa.2019.121941
  16. Mykolaiets D., Klen K. Fundamentals of the automatic control theory. Calculation work. Kyiv : Igor Sikorsky, Kyiv Polytechnic Institute, 2020. 45 p. https://ela.kpi.ua/handle/123456789/38282
  17. Isidori A. Control Theory for Automation: Fundamentals. Springer Handbooks book series (SHB) , 2009. Pp. 147-172. https://link.springer.com/chapter/10.1007/978-3-540-78831-7_9
  18. Modeling of reliability of logistic systems of urban freight transportation taking into account street congestion. / Vojtov V. et al. Eastern-European Journal of Enterprise Technologies. 2019. Vol. 4, no. 3 (100). Рр. 15-21. DOI: 10.15587/1729-4061.2019.175064.
  19. Muzylyov D., Shramenko N., Karnaukh M. (2021) Choice of Carrier Behavior Strategy According to Industry 4.0. In: Ivanov V., Trojanowska J., Pavlenko I., Zajac J., Peraković D. (eds) Advances in Design, Simulation and Manufacturing IV. DSMIE 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-77719-7_22.
Copyright (c) 2023 Andrii Кravtsov, Tetiana Larina, Oleksiy Goryayinov, Anna Kozenok, Tetiana Gorodetska, Inna Babych