DOI: https://doi.org/10.32515/2664-262X.2023.7(38).1.45-55

Selection of Sealing Parameters of the Structure Layout With Sheet Glass

Hennadii Portnov, Viktor Dariienko, Viktor Pukalov

About the Authors

Hennadii Portnov, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: budkom999@gmail.com, ORCID ID: 0000-0001-8040-6761

Viktor Dariienko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: vvdarienko@gmail.com, ORCID ID: 0000-0001-9023-603

Viktor Pukalov, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: Pukalovvictor@gmail.com, ORCID ID: 0000-0002-0848-5861

Abstract

Sheet glass is used in the creation of transparent constructions of building structures, for glazing of airplanes, helicopters, boats, as a structural material for instrument and aggregate construction, production of technical products in mechanical engineering. Structures made of sheet glass include fastening devices with sealing elements. Calculations of such structures cause difficulties, which are associated with the imperfection of their mathematical models. For the preliminary selection of the main parameters of the newly developed structures, it is advisable to use calculation software complexes with the preliminary development of the method of choosing the structure of fixing the glass sheet, taking into account the main sealing parameters according to the results of the study of the structure model. The nature of the stress state of the plate depends mainly on the type of load and the nature of its distribution, the ratio of the long and short sides to the thickness of the sheet glass, as well as the clamping parameters. The assessment of the stress-strain state of the structure is carried out according to the criteria of strength, rigidity and based on the study of dynamic characteristics. The calculations are reduced to justifying the choice of structural parameters of sheet glass, caliper and rubber sealing material, taking into account the stress-deformed state of the structure, operational, structural requirements and economic indicators. The paper presents a methodology for substantiating the selection of the parameters of a transparent structure, which includes a rectangular glass plate, elastic sealing and rigid frames based on model research in the SOLIDWORKS PC environment. It is shown that the parameters of fixing the sheet glass, including the sealing characteristics, significantly affect the mechanical properties of the structure. The developed model makes it possible to estimate the stress-deformed state of sheet glass and the dynamic properties of the structure depending on the parameters of the elastic seal.

Keywords

sheet glass, elastic sealing, 3D modeling, failure criteria, Mohr-Coulomb stress criterion, modal analysis

Full Text:

PDF

References

1. Bazhenov V.A., Perelmuter A.V & Shyshov O.V. (2009). Budivelna mekhanika. Kompiuterni tekhnolohii [Construction mechanics. Computer Technology] . Kyiv : Karavela [in Ukrainian].

2. Gevorgyan, G. Z. (2015). Ob izgibnyh kolebaniyah ortotropnyh polos peremennoj tolshchiny s uchyotom poperechnyh effektov pri usloviyah uprugoj zadelki. [On bending vibrations of orthotropic strips of variable thickness with consideration of transverse effects under the conditions of elastic sealing]. Actual problems of the mechanics of the continuous medium: IV Mezhdunarodnа konferenciа (21-26 sentjabrja 2015 g) – IV International Conference (Р. 129-133). Cahkadzor, Armeniya [in Russian].

3. Demchyna, B., Surmai, S., Tkach, R. & Hula, V (2020). Vyznachennia fizyko-mekhanichnykh vlastyvostei skla na zghyn za dopomohoiu dvoparametrychnoho rozpodilu Veibulla [Determination of the physical and mechanical properties of glass for bending using the two-parameter Weibull distribution]. Book of Sciences, prats Budivelni konstruktsii. Teoriia i praktyka- Collection of sciences, works Building constructions. Theory and practice, Vol. 6, 94-113 [in Ukrainian].

4. Kirakosyan, P.M. (2014). Uprugo-zashchemlyonnaya opora dlya osesimmetrichno izgibaemyh kruglyh plastin [Elastic-clamped support for axisymmetrically bent round plates.]. Problems of the dynamics of the interaction of deformable media: VIII Mezhdunarodna konferencia (22-26 sentjabrja 2014g.) - VIII International Conference (Р. 261-265). Goris- Stepanakert [in Russian].

5. Kirakosyan, P.M. (2015). Ob odnoj neklassicheskoj zadache izgiba uprugo-zashchemlyonnoj krugloj plastinki [On one non-classical problem of bending an elastically pinched circular plate] . Dokl. NAN Armenii- NAS Armenia report, Vol.115, 4, 284-289 [in Russian].

6. Kirakosyan, P.M. & Stepanyan, S.P. (2014). Neklassicheskaya zadacha izgiba ortotropnoj balki peremennoj tolshchiny s uprugo-zashchemlyonnoj oporoj [The non-classical problem of bending an orthotropic beam of variable thickness with an elastically clamped support]. Dokl. NAN Armenii- NAS Armenia report, Vol. 114, №3, 205-212 [in Russian].

7. Kirakosyan, P.M. & Stepanyan, S.P. (2014). Ustojchivost' sterzhnya pri nalichii uprugo- zashchemlyonnoj opory [Stability of the rod in the presence of an elastically pinched support]. Dokl. NAN Armenii- NAS Armenia report, Vol. 114, № 4, 309-315 [in Russian].

8. Kirakosyan, М. (2014). Non-Classical Problem of a Bend Orthotropic Beams with the Elastic Clamped Support. NAS Armenia reports, Vol. 114, № 2, Р. 101-107 [in English].

9. I. Kirakosyan R. M. & Stepanyan S. P. (2016). Zadacha izgiba uprugo-zashchemlyonnoj ortotropnoj krugloj plastinki, opirayushchejsya na uprugom osnovanii [The problem of bending an elastically pinched orthotropic circular plate resting on an elastic base]. Dokl. NAN Armenii- NAS Armenia report, Vol.116. № 2, 120-127 [in Russian].

10. Lebedev, A.A., Koval'chuk, B.I., Giginyak, F.F. et al. (2003). Mechanical properties of structural materials under complex stress. (3d ed.) . Kiev: Izdat. dom «In Jure» [in Russian].

11. Pisarenko, G.S. (2010). Izbrannye Trudy [Selected works]. Kiev: Nauk. dumka [in Russian].

12. Portnov, H.D., Dariienko, V.V. & Pukalov, V.V. (2022). Model stenda dlia doslidzhennia konstruktsii z lystovoho skla [A model of a stand for the study of structures made of sheet glass]. Tsentralnoukrainskyi naukovyi visnyk. Tekhnichni nauky- Central Ukrainian scientific bulletin. Technical sciences, Vol. 6 (37), 331-343 [in Ukrainian].

13. Rodychev, Yu.M. (2005). Konstruktsyonnaia prochnost khrupkykh nemetallycheskykh materyalov. Prochnost materyalov y konstruktsyi [Structural strength of brittle non-metallic materials. Durability of materials and structures]. Kyev : Akademperyodyka [in Russian].

14. Rodichev, Yu. (2013). Ocenka lokal'noj prochnosti i povrezhdaemosti hrupkih materialov po parametram statisticheskogo raspredeleniya eksperimental'nyh dannyh [Evaluation of the local strength and damage of brittle materials according to the parameters of the statistical distribution of experimental data]. Vіsnik Ternopіl's'kogo nacіonal'nogo tekhnіchnogo unіversitetu – Bulletin of the Ternopil National Technical University, Vol. 4, 161-173 [in Russian].

15. Stepanyan, S.P. (2014). Neklassicheskaya zadacha izgiba balki linejno-peremennoj tolshchiny pri nalichii uprugo-zashchemlyonnoj opory [The non-classical problem of bending a beam of linear-variable thickness in the presence of an elastically pinched support.]. Problems of the dynamics of the interaction of deformable media: VIII Mezhdunarodnoj Konferencii (22-26 sentjabrja 2014 g) – VIII International Conference (P. 408-412). Goris-Stepanakert [in Russian].

16. Chykhladze, E.D. (2011). Budivelna mekhanika [Construction mechanics] : Kharkiv : UkrDAZT, [in Ukrainian].

17. Razmik, M. Kirakosyan, Seyran P. Stepanyan. (2015). On a Model of Elastic Clamped Support of Plate-Strip. International scientific Journal, Modeling of Artificial Intelligence, Vol.6, Issue 2, Р. 67-74 [in English].

18. Zubkov, V. & Kondratieva, N. (2008). Characteristics of calculation of flat glass in translucent structures. Glass performance days 2008. Conference Proceedings. New Delhi (India). Р. 27-29. [in English].

19. Zubkov, V. & Kondratieva, N. (2010) Flat glass strength in façade systems coverings and floorings of buildings and structures. Glass. Façade. Energy. Dusseldorf (Germany). Р. 63-70. [in English].

Citations

  1. Баженов В. А., Перельмутер А. В., Шишов О. В. Будівельна механіка. Комп'ютерні технології : Київ : Каравела, 2009. 696 с.
  2. Геворгян Г. З. Об изгибных колебаниях ортотропных полос переменной толщины с учётом поперечных эффектов при условиях упругой заделки. Актуальные проблемы механики сплошной среды: труды IV междунар. конф., 21-26 сентября 2015 г., Цахкадзор, Армения, 2015. С. 129-133.
  3. Визначення фізико-механічних властивостей скла на згин за допомогою двопараметричного розподілу Вейбулла / Демчина Б., Сурмай С., Ткач Р., Гула В. Будівельні конструкції. Теорія і практика. : зб. наук. праць. 2020. № 6. С. 94-113.
  4. Киракосян P. M. Упруго-защемлённая опора для осесимметрично изгибаемых круглых пластин. Проблемы динамики взаимодействия деформируемых сред: труды VIII международной конференции, 22-26 сентября 2014г., Горис- Степанакерт, 2014. С. 261-265.
  5. Киракосян P. M. Об одной неклассической задаче изгиба упруго-защемлённой круглой пластинки . Докл. НАН Армении. 2015. Т.115. №4. С. 284-289.
  6. Киракосян P. M., Степанян С. П. Неклассическая задача изгиба ортотропной балки переменной толщины с упруго-защемлённой опорой. Докл. НАН Армении. 2014. Т.114. № 3. С. 205-212.
  7. Киракосян P. M., Степанян С. П. Устойчивость стержня при наличии упруго-защемлённой опоры. . Докл. НАН Армении. 2014. Т.114. № 4. С. 309-315.
  8. Kirakosyan М. Non-Classical Problem of a Bend Orthotropic Beams with the Elastic Clamped Support. NAS RA Reports, 2014. Volume 114. № 2. Р. 101-107.
  9. И. Киракосян Р. М., Степанян С. П. Задача изгиба упруго-защемлённой ортотропной круглой пластинки, опирающейся на упругом основании. Докл. НАН Армении. 2016. Т.116. №2. С. 120-127.
  10. Механические свойства конструкционных материалов при сложном напряженном состоянии: Справочник / А. А. Лебедев и др. Изд. 3-е изд., перераб. и доп.. К. : Издат. дом «Ин Юре», 2003. 539 с.
  11. Писаренко Г. С. Избранные труды ; отв. ред. В. Т. Трощенко. Киев: Наук. думка, 2010. 727с.
  12. Портнов Г. Д., Дарієнко В. В., Пукалов В. В. Модель стенда для дослідження конструкцій з листового скла. Центральноукраїнський науковий вісник. Технічні науки. 2022. Вип. 6(37). С.331-343.
  13. Родичев Ю. М. Конструкционная прочность хрупких неметаллических материалов. Прочность материалов и конструкций ; под ред. В. Т. Трощенко. Киев : Академпериодика, 2005. С. 955-992.
  14. Родичев Ю. Оценка локальной прочности и повреждаемости хрупких материалов по параметрам статистического распределения экспериментальных данных. Вісник Тернопільського національного технічного університету. 2013. № 4. С. 161-173
  15. Степанян С. П. Неклассическая задача изгиба балки линейно-переменной толщины при наличии упруго-защемлённой опоры. Проблемы динамики взаимодействия деформируемых сред: труды VIII международной конференции, 22-26 сентября 2014 г., Горис-Степанакерт, 2014. С. 408-412.
  16. Чихладзе Е. Д. Будівельна механіка : підручник. Харків : УкрДАЗТ, 2011. 320 с.
  17. Razmik M. Kirakosyan, Seyran P. Stepanyan. On a Model of Elastic Clamped Support of Plate-Strip. International scientific Journal, Modeling of Artificial Intelligence. 2015. Vol.6. Is. 2, Р. 67-74.
  18. Zubkov V. Kondratieva N. Characteristics of calculation of flat glass in translucent structures. Glass performance days 2008. Conference Proceedings. New Delhi (India), 2008, December. Р. 27-29.
  19. Zubkov V. Kondratieva N. Flat glass strength in façade systems coverings and floorings of buildings and structures. Glass. Façade. Energy. Dusseldorf (Germany), 2010. Р. 63-70.
Copyright (c) 2023 Hennadii Portnov, Viktor Dariienko, Viktor Pukalov