DOI: https://doi.org/10.32515/2664-262X.2023.7(38).1.37-44

Means of Controlling a Stepper Motor and Measuring Forces During the Study of the Folding Process of Sheet Material

Nazar Kandiak, Andrii Kolomiiets, Ostap Kotovskii

About the Authors

Nazar Kandiak, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Ukrainian Academy of Printing, L’viv, Ukraine , e-mail: kandyak.nazar@gmail.comORCID ID: 0000-0002-4720-3935

Andrii Kolomiiets, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Ukrainian Academy of Printing, L’viv, Ukraine , e-mail: kolanbor@gmail.com, ORCID ID: 0000-0001-6441-0234

Ostap Kotovskii, post-graduate, Ukrainian Academy of Printing, L’viv, Ukraine , e-mail: os.kotovskyi@gmail.com, ORCID ID: 0009-0004-9421-9667

Abstract

The improvement of the equipment for the forming of the volumetric shape of packages and containers requires a detailed study of the phenomena in the folding process of sheet material with a complex structure (corrugated cardboard). A stand has been created to study process parameters, successful research on which should be provided by programmed control of tool movement and synchronous transfer of measured data to a computer for further processing. Moving tools (punches) are driven by a stepper motor. The movement of the stepper motor shaft is programmed to obtain both a uniform movement and movement according to a certain law, which can be different for the working and reverse moves. Forces are measured by a strain gauge clamp, the signal from which is also transmitted to external devices for visualization and processing. The basis of the motor control and measurement unit is the Arduino Uno microcontroller, which, together with the Arduino Nano controller and the analog-to-digital converter, significantly expands the functionality of the stand. The diagram and operation of the created control and measurement unit is described. A special program has been created to study the geometric, kinematic and power parameters of the process, the possibility of quickly changing the law of motion, providing various ratios and laws of motion to the working and reverse motion of punches. The laws of motion for the motor shaft are presented in it in the form of matrices of values, which are accessed before starting the measurement from the stand control panel. The parameters of the process of simultaneous folding of corrugated cardboard, which were investigated using a stand, are described. The developed measurement technique and means of controlling the movement of the stepper motor of the tool drive allowed to estimate the maximum effort, the nature of the change during the work cycle, to compare different types of material and folding modes. The result of determining the optimal parameters of the process of operational packaging & container formation is the creation of recommendations necessary for the design of modern energy-saving equipment.

Keywords

programming, stand, stepper motor, driver, control, law of motion, measurement

Full Text:

PDF

References

1. Shreder, V.L. & Yovanovych, K.S. (1999). Karton. Tara y upakovka [Cardboard. Container and packaging]. Kyiv : YATs «Upakovka» [in Ukrainian].

2. Rehei, I.I. (2011). Spozhyvche kartonne pakovannia. Materialy, proektuvannia, obladnannia dlia vyhotovlennia [Consumer cardboard packaging. Materials, design, manufacturing equipment]. Lviv: UAD [in Ukrainian].

3. Kolomiets, A.B. & Kotovskii, O.O. (2020). Research of the cardboard tray and case volumetric forming process. Theoretical foundations of modern science and practice: Abstracts of XI International Scientific and Practical Conference. Melbourne, Australia. (Pp.55-58). Retrieved from http://isg-konf.com [in English].

4. Kolomiets, A.B., Kandiak, N.M. & Kotovskii, O.O. (2019). Experimental stand for research of forming process of a printed carton packaging. Printing, multimedia and web technologies: IV Mizhnarodna naukovo-tekhnichna konferentsia (14-17 travnia 2019r., m. Kharkiv) – IV International Scientific and Technical Conference (Pp. 26-27). Vol.1. Kharkiv: «Drukarnia Madryd» [in English].

5. Berndt, H. & Kaynka, B. (2008). Izmerenye, upravlenie y rehulyrovanie s pomoshchiu makrosov VBA v Word i Excel [Measure, control and regulate with VBA macros in Word and Excel.]. Kiev: MK-Press; SPb: Korona-Vek [in Rusian].

6. Andrieiev, A. H., Lvov, H. I. & Shchepkin, O. V. (2017). Tenzometriia [Tensometry]. Kharkiv : NTU «KhPI» [in Ukrainian].

7. Candelas, F. A., García, G. J., Puente, S., Pomares, J., Jara, C. A., Pérez, J., Mira, D., & Torres,F. (2015). Experiences on using Arduino for laboratory experiments of Automatic Control and Robotics. IFAC- PapersOnLine, 48(29), 105-110 [in English].

8. Blum J. Exploring Arduino: Tools and Techniques for Engineering Wizardry, John Wiley & Sons, 2, 512 (2019). doi: 1119405378, 9781119405375 [in English].

9. Calin Galeriu, Scott Edwards & Geoffrey Esper (2014). An Arduino Investigation of Simple Harmonic Motion . The Physics Teacher, 52, 157. https://doi.org/10.1119/1.4865518 [in English].

10. Maik Schmidt. (2015). Arduino: A Quick-Start Guide. Pragmatic Bookshelf, 2, 324. doi: 168050522X, 9781680505221 [in English].

Citations

  1. Шредер В.Л., Йованович К.С. Картон. Тара и упаковка. К. : ИАЦ «Упаковка», 1999. 192 с.
  2. Регей І.І. Споживче картонне паковання. Матеріали, проектування, обладнання для виготовлення. Львів: УАД, 2011. 142 с.
  3. Kolomiets A.B., Kotovskii O.O. Research of the cardboard tray and case volumetric forming process . Theoretical foundations of modern science and practice. Abstracts of XI International Scientific and Practical Conference. Melbourne, Australia. 2020. Pp.55-58. URL: http://isg-konf.com (дата звернення: 11.03.2023)
  4. Kolomiets A.B., Kandiak N.M., Kotovskii O.O. Experimental stand for research of forming process of a printed carton packaging . Поліграфічні, мультимедійні та web-технології: тези допов. ІV Міжнародної науково-технічної конференції, 14-17 травня 2019р., м. Харків. Харків: «Друкарня Мадрид», 2019. Т1. С. 26-27.
  5. Берндт Г., Каинка Б. Измерение, управление и регулирование с помощью макросов VBA в Word и Excel. К.: МК-Пресс; СПб: Корона-Век, 2008. 256 c.
  6. Андрєєв А. Г., Львов Г. І., Щепкін О. В. Тензометрія: підручник. Харків : НТУ «ХПІ», 2017. 232 с.
  7. Candelas, F. A., García, G. J., Puente, S., Pomares, J., Jara, C. A., Pérez, J., Mira, D., & Torres,F. (2015). Experiences on using Arduino for laboratory experiments of Automatic Control and Robotics. IFAC- PapersOnLine, 48(29), 105-110.
  8. Blum J. Exploring Arduino: Tools and Techniques for Engineering Wizardry, John Wiley & Sons, 2, 512 (2019). doi: 1119405378, 9781119405375.
  9. An Arduino Investigation of Simple Harmonic Motion – The Physics Teacher 52, 157 (2014); https://doi.org/10.1119/1.4865518.
  10. Maik Schmidt. Arduino: A Quick-Start Guide. Pragmatic Bookshelf, 2, 324 (2015). doi: 168050522X, 9781680505221.
Copyright (c) 2023 Nazar Kandiak, Andrii Kolomiiets, Ostap Kotovskii