DOI: https://doi.org/10.32515/2664-262X.2023.7(38).1.167-176

Justification of the Mechanism of the Functioning of the Mechatronic System of Car Windshield Cleaning

Viktor Aulin, Dmytro Holub

About the Authors

Viktor Aulin, Professor, Doctor in Technics (Doctor of Technic Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: AulinVV@gmail.com, ORCID ID: 0000-0003-2737-120X

Dmitro Holub, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: dimchik529@gmail.com, ORCID ID: 0000-0003-4984-1161

Abstract

The four-link mechanism of the car's mechatronic windshield cleaning system is substantiated using different ratios of links and analysis of their kinematic and dynamic characteristics. A mathematical model of the glass cleaning mechanism in the Matlab/Simulink environment is presented and its kinematic synthesis is carried out. A mathematical model of the movement of the brush on the glass was developed for the case of close to uniform pressure distribution along the length of the brush, taking into account the unevenness of the law of movement associated with the operation of the transmission mechanism. The influence of the material properties of the rubber element on the quality of glass cleaning and the obtained values of the values characterizing the elastic and dissipative properties of the neck in the limit modes of the system are considered. The possibility of regeneration self-oscillations is shown when the dissipative properties of the neck are reduced as a result of wear or an aggressive environment. The processes of dry friction and hydraulic movement resistance occurring in the system are clarified, the limits of possible visually noticeable self-oscillations depending on the parameters of the friction mode and system operation are shown. It was found that the presence in the system of the possibility of regenerative self-oscillations in critical operating modes requires the introduction of micro-oscillations into the law of movement of the brush on the glass, which can effectively reduce the amplitudes of these self-oscillations. Analytical dependencies are proposed for calculating the parameters of the software, which implements the management of the dynamic characteristics of the system by superimposing the law of motion of micro-oscillations. The necessary hardware and software requirements for the controller are shown, as well as the possibility of saving the windshield wiper control unit as a functional unit of the mechatronic system for ensuring the comfort of movement.

Keywords

mechatronic system, modeling, window cleaning mechanism, car, brushes, rubber element, transmission mechanism, deflection angle

Full Text:

PDF

References

1. Konrad Reif (2015). Automotive mechatronics. Automotive networking, driving stability systems, electronics. Wiesbaden : Springer Fachmedien [in English].

2. Fijalkowski, B.T. (2011). Automotive mechatronics: operational and practical issues. Heidelberg : Springer. Volume I. [in English].

3. Aulin, V.V., Golub, D.V. & Grinkiv, A.V. (2017). Metodologichni i teoretichni osnovi zabezpechennya ta pidvishennya nadijnosti funkcionuvannya avtomobilnih transportnih sistem: monografiya [Methodological and theoretical bases of maintenance and increase of reliability of functioning of automobile transport systems] . Kropivnickij: Vidavnictvo TOV "KOD" [in Ukrainian].

4. Aulin, V.V. & Holub, D.V. (2017). Metody otsinky i analizu nadijnosti avtomobil'nykh transportnykh system [Methods of evaluating and analyzing the reliability of automobile transport systems]. Mizhnarodna nauk.-tekhn. konf. molodykh uchenykh ta studentiv (16-17 lystopada 2017 r. ) – International Scientific and Technical conf. young scientists and students (p.14-15). Vol. III.. Ternopil': Ternopil's'kyj natsional'nyj tekhnichnyj universytet imeni Ivana Puliuia [in Ukrainian].

5. Pankov A.O., Aulin V.V., Golub D.V. ta in. (2019). Rozrobka intelektualnogo mehatronnogo modulya dlya sistemi upravlinnya dozuvannyam [Development of an intelligent mechatronic module for the dosing control system]. Integrated intelligent robotic complexes (IIRTK-2019)": Dvanadcyatа mizhnarodnа naukovo-praktichnа konferenciа (21-22 travnya 2019 roku, Kiyiv) – 12 international scientific and practical conference (p. 173-175). Kyiv: NAU [in Ukrainian].

6. Aulin, V.V., Golub, D.V. & Agaponenko, M.I. (2018). Rozrobka kryteriiu vdoskonalennia systemy tekhnichnoi ekspluatatsii zasobiv transportu z vrakhuvanniam neobkhidnoi diahnostychnoi informatsii. [Development of criteria for improving the system of technical operation of means of transport, taking into account the necessary diagnostic information]. Naukovi notatky : mizhvuz. zb. – Scientific notes: an interuniversity collection, 62, 17-20 [in Ukrainian].

7. Goloborodko, O.O. & Korobochka, O.O. (2006). Mehatronni sistemi avtomobilnogo transportu: navch. posib [Mechatronic systems of road transport]. Harkiv: TOV «SMIT» [in Ukrainian].

8. Levent Güvenc, Bilin Aksun Güvenc, Burak Demirel (2017). Control of mechatronic systems. London : The Institution of Engineering and Technology [in English].

9. William Bolton (2015). Mechatronics: electronic control systems in mechanical and electrical engineering. Harlow : Pearson [in English].

10. Uwe Kiencke & Lars Nielsen (2005). Automotive сontrol systems for engine, driveline, and vehicle. Berlin : Springer-Verlag [in English].

11. Robert, H. Bishop (2007). Mechatronic Systems, Sensors, And Actuators. Boca Raton: CRC Press [in English].

Citations

  1. Konrad Reif. Automotive mechatronics. Automotive networking, driving stability systems, electronics. Wiesbaden : Springer Fachmedien, 2015. 549 p.
  2. Fijalkowski B.T. Automotive mechatronics: operational and practical issues. Heidelberg : Springer, 2011. Volume I. 612 p.
  3. Методологічні і теоретичні основи забезпечення та підвищення надійності функціонування автомобільних транспортних систем: монографія. / Аулін В.В., Голуб Д.В., Гриньків А.В. та ін. Кропивницький: Видавництво ТОВ "КОД", 2017. 370 с.
  4. Аулін В.В., Голуб Д.В. Методи оцінки і аналізу надійності автомобільних транспортних систем. Міжнародна наук.-техн. конф. молодих учених та студентів: зб. тез доповідей, 16-17 листопада 2017 р. Том ІІІ. Тернопіль: Тернопільський національний технічний університет імені Івана Пулюя, 2017. С.14-15.
  5. Панков А.О., Аулін В.В., Голуб Д.В. та ін. Розробка інтелектуального мехатронного модуля для системи управління дозуванням. Інтегровані інтелектуальні робототехнічні комплекси (ІІРТК-2019)" : зб. тез Дванадцятої міжнар. наук.-практ. конф., 21-22 травня 2019 року, Київ, Україна. К.: НАУ, 2019. 173-175.
  6. Аулін В.В., Голуб Д.В., Агапоненко М.І. Розробка критерію вдосконалення системи технічної експлуатації засобів транспорту з врахуванням необхідної діагностичної інформації. Наукові нотатки : міжвуз. зб. 2018. №62. С.17-20.
  7. Голобородько О.О., Коробочка О.О. Мехатронні системи автомобільного транспорту: навч. посіб. Харків: ТОВ «СМІТ», 2006. 300 с.
  8. Levent Güvenc, Bilin Aksun Güvenc, Burak Demirel. Control of mechatronic systems. London : The Institution of Engineering and Technology, 2017. 217 p.
  9. William Bolton. Mechatronics: electronic control systems in mechanical and electrical engineering. Harlow : Pearson, 2015. 663 p.
  10. Uwe Kiencke, Lars Nielsen. Automotive сontrol systems for engine, driveline, and vehicle. Berlin : Springer-Verlag, 2005. 521 p.
  11. Robert H. Bishop. Mechatronic Systems, Sensors, And Actuators. Boca Raton: CRC Press, 2007. 656 p.
Copyright (c) 2023 Viktor Aulin, Dmytro Holub