DOI: https://doi.org/10.32515/2664-262X.2022.6(37).2.120-126

Stand Model for the Study of Sheet Glass Structures

Hennadii Portnov, Viktor Dariienko, Viktor Pukalov

About the Authors

Hennadii Portnov, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Dnipro State Agrarian and Economic University, Dnipro, Ukraine, e-mail: budkom999@gmail.com, ORCID ID: 0000-0001-8040-6761

Viktor Dariienko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Dnipro State Agrarian and Economic University, Dnipro, Ukraine, e-mail: vvdarienko@gmail.com, ORCID ID: 0000-0001-9023-6030

Viktor Pukalov, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Dnipro State Agrarian and Economic University, Dnipro, Ukraine, e-mail: Pukalovvictor@gmail.com, ORCID ID: 0000-0002-0848-5861

Abstract

The use of sheet glass as a structural material capable of bearing significant loads is complicated by the lack of regulatory documents for calculating the stress-strain state. This is primarily due to the variability of the strength characteristics of sheet glass. In practice, these necessary indicators are obtained by conducting full-scale research. A large number of factors that affect the strength of glass makes the test results statically heterogeneous, which leads to a high cost of research. The use of the capabilities of modern 3D modeling software systems can significantly reduce the cost of testing by virtually simulating the impact on the model of the structural element. The glass plate model is free of production defects, so its study allows for determining the general direction of the influence of structural factors on the structure's performance and its optimization. This paper presents a stand model developed in the SOLIDWORKS environment for the study of sheet glass structures under the action of uniformly distributed pressure. Analyzing the model in the SOLIDWORKS Simulation module according to the proposed settings allows to study of the stress state of flat glass depending on the parameters of the rubber gasket and to justify the design of the support unit. The model allows to estimate of the stress-strain state of structural elements based on the Mohr-Coulomb failure criterion (for a glass plate), and stresses (according to Mise, and others) for support elements. The above settings of the program ensure its conflict-free operation with low machine resource consumption. There is a possibility of variations in the design of the support unit, including taking into account the conditions of fixing (friction) elements. The localization of critical stresses in the glass plate coincides with the data from field experiments, which indicates the adequacy of the model. The developed model of the stand allows for the investigation of the stressed state of sheet glass under uniform load conditions, depending on the parameters of the rubber gasket.

Keywords

sheet glass, support unit, 3D modeling, failure criterion, Mohr-Coulomb stress criterion

Full Text:

PDF

References

1. Demchyna, B., Sumrai, M., Tkach, R. & Gula, V. (2020). Determining the physical and mechanical properties of glass for bending using the two-parameter Weibull distribution. Building structures. Theory and practice: a collection of scientific works of the Ministry of Education and Science of Ukraine. Kyiv National University of Construction and Architecture. Issue 6. P. 94–113 [in Ukrainian].

2. Rodichev, Yu.M., Veyer, F.A., Soroka, O.B. & Shabetya, O.A. (2018). Structural strength of thermally strengthened glass. Strength problems. No. 4. P. 85–100 [in Ukrainian].

3. Mognato, E., Brocca, S., & Comiati, F. (2018). Which is the right reference surface compression value for heat treated glass. Challenging Glass 6. C. Louter, F. Bos, J. Belis, et al. (Eds.). P. 703–712 [in English]. https://doi.org/10.7480/cgc.6.

4. Veer, F.A. & Rodichev, Y.M. (2014). The relation between pre-stress and failure stress in tempered glass. Challenging Glass 4 and COST Action TU0905 Final Conference. C. Louter, F. Bos, J. Belis, J.-P. Lebet (Eds.). Leiden: CRC Press. P. 731–738 [in English].

5. Kalamar, R. & Eliášová, M. (2015). Load Bearing Innovative Construction from Glass. IOP Conf. Series: Materials Science and Engineering, 96. P. 12–66. https//doi.org/10.1088/1757-99X/96/1/012066 [in English].

6. Mould, R.E. (1967). The Strength of Inorganic Glasses. L.J. Bonis, J. J. Duga, J.J. Gilman (Eds), Phenomena in the Materials Sciences,V. 4: Fracture of Metals Polymers and Glasses, Plenum Press. P. 119-149. ttp://www.americanglassresearch.com/sites/default/files/r009the_strength_of_inorganic_glass.pdf. [in English].

7. Costa S., Miranda M., Varum H. & Teixeira-Dias. (2006). On the Evaluation of the Mechanical Behaviour of Structural Glass Elements. Materials Science Forum 514-516. P. 799-803. http//doi.org/10.4028/www.scientific.net/MSF.514-516.799. [in English].

8. Nielsen, J.H. (2008). Experimental investigation of residual stresses in toughened glass. Challenging Glass 1. F. Bos, C. Louter, and F. Veer (Eds.). Amsterdam: Delft University Press. 2008. P. 387–398 [in English].

9. Rodichev, Yu.M. (2015). Defekty poverhnosti i prochnost' listovogo stekla pri ciklicheskom i dlitel'nom staticheskom nagruzhenii. [Surface defects and strength of sheet glass under cyclic and long-term static loading]. Problemy prochnosti – Strength problems, 2, 101–115 [in Russian].

10. Zubkov, V. & Kondratieva, N. (2010). Flat glass strength in facade systems coverings and floorings of buildings and structures. Glass. Facade. Energy. Dusseldorf (Germany). P. 63–70 [in English].

11. Veer, F.A. & Rodichev, Y.M. (2016). Improving the engineering strength of heat strengthened glass. Heron. 61, No. 2. P. 121–138 [in English].

Citations

  1. Демчина Б., Сумрай М., Ткач Р., Гула В. Визначення фізико-механічних властивостей скла на згин за допомогою двопараметричного розподілу Вейбулла. Будівельні конструкції. Теорія і практика: збірник наукових праць МОН України. Київський національний університет будівництва і архітектури. 2020. Вип. 6. С. 94–113.
  2. Родічев Ю. М., Веєр Ф. А., Сорока О. Б., Шабетя О. А. Конструкційна міцність термічно зміцненого скла. Проблемы прочности. 2018. № 4. С. 85–100.
  3. Mognato E., Brocca S., and Comiati F. Which is the right reference surface compression value for heat treated glass. Challenging Glass 6. C. Louter, F. Bos, J. Belis, et al. (Eds.). 2018. P. 703–712. https://doi.org/10.7480/cgc.6.
  4. Veer F. A. and Rodichev Y. M. The relation between pre-stress and failure stress in tempered glass. Challenging Glass 4 and COST Action TU0905 Final Conference. C. Louter, F. Bos, J. Belis, J.-P. Lebet (Eds.). Leiden: CRC Press. 2014. P. 731–738.
  5. Kalamar R., Eliášová M. Load Bearing Innovative Construction from Glass. IOP Conf. Series: Materials Science and Engineering 96. 2015. P. 12–66. https//doi.org/10.1088/1757-99X/96/1/012066 (Lest accessed: 04.11.2022)
  6. Mould R. E. The Strength of Inorganic Glasses. L.J. Bonis, J. J. Duga, J.J. Gilman (Eds), Phenomena in the Materials Sciences,V. 4: Fracture of Metals Polymers and Glasses, Plenum Press. 1967. P. 119-149. http://www.americanglassresearch.com/sites/default/files/r009the_strength_of_inorganic_glass.pdf. (Lest accessed: 07.11.2022)
  7. Costa S., Miranda M., Varum H., Teixeira-Dias, On the Evaluation of the Mechanical Behaviour of Structural Glass Elements. Materials Science Forum 514-516. 2006. P. 799-803. http//doi.org/10.4028/www.scientific.net/MSF.514-516.799.
  8. Nielsen J. H. Experimental investigation of residual stresses in toughened glass. Challenging Glass 1. F. Bos, C. Louter, and F. Veer (Eds.). Amsterdam: Delft University Press. 2008. P. 387–398.
  9. Родичев Ю. М. Дефекты поверхности и прочность листового стекла при циклическом и длительном статическом нагружении. Проблемы прочности. 2015. № 2. С. 101–115.
  10. Zubkov V., Kondratieva N. Flat glass strength in facade systems coverings and floorings of buildings and structures. Glass. Facade. Energy. Dusseldorf (Germany). 2010. P. 63–70.
  11. Veer F. A. and Rodichev Y. M. Improving the engineering strength of heat strengthened glass. Heron. 2016. 61, No. 2. P. 121–138.
Copyright (c) 2022 Hennadii Portnov, Viktor Dariienko, Viktor Pukalov