DOI: https://doi.org/10.32515/2664-262X.2022.6(37).2.3-16
Multi-Agent Metaheuristic Methods for Solving the Inventory Management Problem
About the Authors
Eugene Fedorov, Professor, Doctor in Technics (Doctor of Technic Sciences), Cherkasy State Technological University, Cherkasy, Ukraine, e-mail: fedorovee75@ukr.net, , ORCID ID: 0000-0003-3841-7373
Оlga Nechyporenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Cherkasy State Technological University, Cherkasy, Ukraine, e-mail: olne@ukr.net, ORCID ID: 0000-0002-3954-3796
Abstract
Currently, the problem of insufficient efficiency of supply chain management is relevant. One of the problems solved within the limits of the specified problem is the optimization problem of inventory management. Optimization methods that find an approximate solution using a directed search have a high probability of reaching a local extremum. Optimization methods that find an exact solution have a high computational complexity. Random search methods do not guarantee convergence. In this connection, there is a problem of insufficient efficiency of optimization methods, which needs to be solved.
The article considers the task of inventory management as a component of the task of effective supply chain management. To solve this problem, the existing multi-agent metaheuristic methods were investigated. To improve the quality of solving this problem, particle swarm optimization and artificial fish swarm algorithm were chosen, which are modified by introducing dynamic parameters and Cauchy and Gaussian distributions. Parallel algorithms based on CUDA technology are proposed for these methods. This made it possible to ensure high speed and accuracy of the decision.
The proposed methods are designed for software implementation in the Matlab package using the Parallel Computing Toolbox, which speeds up the process of finding a solution. The software that implements the proposed methods was developed and researched based on the data of the logistics company "Ekol Ukraine". The conducted experiments confirmed the functionality of the developed software and allow us to recommend it for practical use in solving supply chain management problems. Prospects for further research are to test the proposed methods on a wider set of test databases.
Keywords
inventory management problem, supply chain management, multi-agent metaheuristic methods, particle swarm optimization, artificial fish swarm algorithm
Full Text:
PDF
References
1. Cox, J. F. & Schleher, J. G. (2010). Theory of Constraints Handbook. New York: NY, McGraw-Hill [in English].
2. Smerichevska, S. (Eds.). (2020). Cluster Policy of Innovative Development of the National Economy: Integration and Infrastructure Aspects: monograph. Poznań: Wydawnictwo naukowe WSPIA [in English].
3. Subbotin, S., Oliinyk, A., Levashenko, V. & Zaitseva, E. (2016). Diagnostic Rule Mining Based on Artificial Immune System for a Case of Uneven Distribution of Classes in Sample. Communications, Vol.3, 3-11 [in English].
4. Nakib, A. & Talbi, El-G. (2017). Metaheuristics for Medicine and Biology. Berlin: Springer-Verlag [in English].
5. Engelbrecht, A. P. (2007). Computational Intelligence: an introduction. Chichester, West Sussex: Wiley & Sons. DOI: 10.1002/9780470512517 [in English].
6. Yang, X.-S. (2018). Nature-inspired Algorithms and Applied Optimization. Charm: Springer. DOI: 10.1007/978-3-642-29694-9 [in English].
7. Martí, R., Pardalos, P. M. & Resende, M. G. C. (2018). Handbook of Heuristics. – Charm: Springer. DOI: 10.1007/978-3-319-07124-4 [in English].
8. Blum, C. & Raidl, G. R. (2016). Hybrid Metaheuristics. Powerful Tools for Optimization. Charm: Springer. DOI: 10.1007/978-3-319-30883-8 [in English].
9. Yang, X.-S. (2018). Optimization Techniques and Applications with Examples. Hoboken, New Jersey: Wiley & Sons. DOI: 10.1002/9781119490616 [in English].
10. Chopard, B. & Tomassini, M. (2018). An Introduction to Metaheuristics for Optimization. New York: Springer. DOI: 10.1007/978-3-319-93073-2 [in English].
11. Radosavljević, J. (2018). Metaheuristic Optimization in Power Engineering. New York: The Institution of Engineering and Technology. DOI: 10.1049/PBPO131E [in English].
12. Du, K.-L. & Swamy, M. N. S. (2016). Search and Optimization by Metaheuristics. Techniques and Algorithms Inspired by Nature. Charm: Springer. DOI: 10.1007/978-3-319-41192-7 [in English].
13. Bozorg Haddad, O., Solgi, M. & Loaiciga, H. (2017). Meta-heuristic and Evolutionary Algorithms for Engineering Optimization. Hoboken, New Jersey: Wiley & Sons. DOI: 10.1002/9781119387053 [in English].
14. Alba, E., Nakib, A. & Siarry, P. (2013). Metaheuristics for Dynamic Optimization. Berlin: Springer-Verlag. DOI: 10.1007/978-3-642-30665-5 [in English].
15. Fedorov, E., Lukashenko, V., Utkina, T., Lukashenko, A. & Rudakov K. (2019). Method For Parametric Identification Of Gaussian Mixture Model Based On Clonal Selection Algorithm. CEUR Workshop Proceedings, Vol. 2353, 41-55 [in English].
16. Grygor, O. O., Fedorov, E. E., Utkina, T. Yu., Lukashenko, A. G., Rudakov, K. S. & Harder, D. A. et al. (2019). Optimization method based on the synthesis of clonal selection and annealing simulation algorithms. Radio Electronics, Computer Science, Control, 2, 90-99. DOI: 10.15588/1607-3274-2019-2-10 [in English].
17. Spears, W. M., Green, D. T. & Spears, D. F. (2010). Biases in particle swarm optimization. International Journal of Swarm Intelligence Research, Vol. 1, 2, 34–57. DOI: 10.4018/jsir.2010040103 [in English].
18. Neshat, M., Adeli, A., Sepidnam, G., Sargolzaei, M. & Toosi A. N. (2012). A Review of Artificial Fish Swarm Optimization Methods and Applications. International Journal on Smart Sensing and Intelligent Systems, Vol. 5, 1,107–148. DOI: 10.21307/ijssis-2017-474 [in English].
Citations
- Cox J. F., Schleher J. G. Theory of Constraints Handbook . New York: NY, McGraw-Hill, 2010. 1175 p.
- Cluster Policy of Innovative Development of the National Economy: Integration and Infrastructure Aspects : monograph / under the editorship of professor Svitlana Smerichevska. Poznań: Wydawnictwo naukowe WSPIA, 2020. 380 p.
- Diagnostic Rule Mining Based on Artificial Immune System for a Case of Uneven Distribution of Classes in Sample / S. Subbotin, A. Oliinyk, V. Levashenko, E. Zaitseva . Communications. 2016. Vol.3. P.3-11.
- Nakib A., Talbi El-G. Metaheuristics for Medicine and Biology . Berlin: Springer-Verlag, 2017. 211 p.
- Engelbrecht A. P. Computational Intelligence: an introduction . Chichester, West Sussex: Wiley & Sons, 2007. 630 p. DOI: 10.1002/9780470512517.
- Yang X.-S. Nature-inspired Algorithms and Applied Optimization . Charm: Springer, 2018. 330 p. DOI: 10.1007/978-3-642-29694-9
- Martí R. Pardalos P. M.,. Resende M. G. C. Handbook of Heuristics . Charm: Springer, 2018. 1289 p. DOI: 10.1007/978-3-319-07124-4
- Blum C., Raidl G. R. Hybrid Metaheuristics. Powerful Tools for Optimization . Charm: Springer, 2016. 157 p. DOI: 10.1007/978-3-319-30883-8
- Yang X.-S. Optimization Techniques and Applications with Examples . Hoboken, New Jersey: Wiley & Sons, 2018. 364 p. DOI: 10.1002/9781119490616
- Chopard B., Tomassini M. An Introduction to Metaheuristics for Optimization . New York: Springer, 2018. 230 p. DOI: 10.1007/978-3-319-93073-2
- Radosavljević J. Metaheuristic Optimization in Power Engineering . New York: The Institution of Engineering and Technology, 2018. 536 p. DOI: 10.1049/PBPO131E
- Du K.-L., Swamy M. N. S. Search and Optimization by Metaheuristics. Techniques and Algorithms Inspired by Nature . Charm: Springer, 2016. 434 p. DOI: 10.1007/978-3-319-41192-7
- Bozorg Haddad O., Solgi M., Loaiciga H. Meta-heuristic and Evolutionary Algorithms for Engineering Optimization . Hoboken, New Jersey: Wiley & Sons, 2017. 293 p. DOI: 10.1002/9781119387053
- Alba E., Nakib A., Siarry P.. Metaheuristics for Dynamic Optimization . Berlin: Springer-Verlag, 2013. 398 p. DOI: 10.1007/978-3-642-30665-5
- Method For Parametric Identification Of Gaussian Mixture Model Based On Clonal Selection Algorithm / E. Fedorov, V. Lukashenko, T. Utkina, A. Lukashenko, K. Rudakov . CEUR Workshop Proceedings. 2019. Vol. 2353. P. 41-55.
- Grygor O. O. Optimization method based on the synthesis of clonal selection and annealing simulation algorithms / O. O. Grygor, E. E. Fedorov, T. Yu. Utkina, A. G. Lukashenko, K. S. Rudakov, D. A. Harder et al . Radio Electronics, Computer Science, Control. 2019. № 2. P. 90-99. DOI: 10.15588/1607-3274-2019-2-10.
- Spears W. M., Green D. T., Spears D. F. Biases in particle swarm optimization . International Journal of Swarm Intelligence Research. 2010. Vol. 1, No. 2. P. 34–57. DOI: 10.4018/jsir.2010040103
- Review of Artificial Fish Swarm Optimization Methods and Applications / M. Neshat, A. Adeli, G. Sepidnam, M. Sargolzaei, A. N. Toosi. International Journal on Smart Sensing and Intelligent Systems. 2012. Vol. 5, No. 1. P. 107–148. DOI: 10.21307/ijssis-2017-474
Copyright (c) 2022 Eugene Fedorov, Оlga Nechyporenko
Multi-Agent Metaheuristic Methods for Solving the Inventory Management Problem
About the Authors
Eugene Fedorov, Professor, Doctor in Technics (Doctor of Technic Sciences), Cherkasy State Technological University, Cherkasy, Ukraine, e-mail: fedorovee75@ukr.net, , ORCID ID: 0000-0003-3841-7373
Оlga Nechyporenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Cherkasy State Technological University, Cherkasy, Ukraine, e-mail: olne@ukr.net, ORCID ID: 0000-0002-3954-3796
Abstract
Keywords
Full Text:
PDFReferences
1. Cox, J. F. & Schleher, J. G. (2010). Theory of Constraints Handbook. New York: NY, McGraw-Hill [in English].
2. Smerichevska, S. (Eds.). (2020). Cluster Policy of Innovative Development of the National Economy: Integration and Infrastructure Aspects: monograph. Poznań: Wydawnictwo naukowe WSPIA [in English].
3. Subbotin, S., Oliinyk, A., Levashenko, V. & Zaitseva, E. (2016). Diagnostic Rule Mining Based on Artificial Immune System for a Case of Uneven Distribution of Classes in Sample. Communications, Vol.3, 3-11 [in English].
4. Nakib, A. & Talbi, El-G. (2017). Metaheuristics for Medicine and Biology. Berlin: Springer-Verlag [in English].
5. Engelbrecht, A. P. (2007). Computational Intelligence: an introduction. Chichester, West Sussex: Wiley & Sons. DOI: 10.1002/9780470512517 [in English].
6. Yang, X.-S. (2018). Nature-inspired Algorithms and Applied Optimization. Charm: Springer. DOI: 10.1007/978-3-642-29694-9 [in English].
7. Martí, R., Pardalos, P. M. & Resende, M. G. C. (2018). Handbook of Heuristics. – Charm: Springer. DOI: 10.1007/978-3-319-07124-4 [in English].
8. Blum, C. & Raidl, G. R. (2016). Hybrid Metaheuristics. Powerful Tools for Optimization. Charm: Springer. DOI: 10.1007/978-3-319-30883-8 [in English].
9. Yang, X.-S. (2018). Optimization Techniques and Applications with Examples. Hoboken, New Jersey: Wiley & Sons. DOI: 10.1002/9781119490616 [in English].
10. Chopard, B. & Tomassini, M. (2018). An Introduction to Metaheuristics for Optimization. New York: Springer. DOI: 10.1007/978-3-319-93073-2 [in English].
11. Radosavljević, J. (2018). Metaheuristic Optimization in Power Engineering. New York: The Institution of Engineering and Technology. DOI: 10.1049/PBPO131E [in English].
12. Du, K.-L. & Swamy, M. N. S. (2016). Search and Optimization by Metaheuristics. Techniques and Algorithms Inspired by Nature. Charm: Springer. DOI: 10.1007/978-3-319-41192-7 [in English].
13. Bozorg Haddad, O., Solgi, M. & Loaiciga, H. (2017). Meta-heuristic and Evolutionary Algorithms for Engineering Optimization. Hoboken, New Jersey: Wiley & Sons. DOI: 10.1002/9781119387053 [in English].
14. Alba, E., Nakib, A. & Siarry, P. (2013). Metaheuristics for Dynamic Optimization. Berlin: Springer-Verlag. DOI: 10.1007/978-3-642-30665-5 [in English].
15. Fedorov, E., Lukashenko, V., Utkina, T., Lukashenko, A. & Rudakov K. (2019). Method For Parametric Identification Of Gaussian Mixture Model Based On Clonal Selection Algorithm. CEUR Workshop Proceedings, Vol. 2353, 41-55 [in English].
16. Grygor, O. O., Fedorov, E. E., Utkina, T. Yu., Lukashenko, A. G., Rudakov, K. S. & Harder, D. A. et al. (2019). Optimization method based on the synthesis of clonal selection and annealing simulation algorithms. Radio Electronics, Computer Science, Control, 2, 90-99. DOI: 10.15588/1607-3274-2019-2-10 [in English].
17. Spears, W. M., Green, D. T. & Spears, D. F. (2010). Biases in particle swarm optimization. International Journal of Swarm Intelligence Research, Vol. 1, 2, 34–57. DOI: 10.4018/jsir.2010040103 [in English].
18. Neshat, M., Adeli, A., Sepidnam, G., Sargolzaei, M. & Toosi A. N. (2012). A Review of Artificial Fish Swarm Optimization Methods and Applications. International Journal on Smart Sensing and Intelligent Systems, Vol. 5, 1,107–148. DOI: 10.21307/ijssis-2017-474 [in English].
Citations
- Cox J. F., Schleher J. G. Theory of Constraints Handbook . New York: NY, McGraw-Hill, 2010. 1175 p.
- Cluster Policy of Innovative Development of the National Economy: Integration and Infrastructure Aspects : monograph / under the editorship of professor Svitlana Smerichevska. Poznań: Wydawnictwo naukowe WSPIA, 2020. 380 p.
- Diagnostic Rule Mining Based on Artificial Immune System for a Case of Uneven Distribution of Classes in Sample / S. Subbotin, A. Oliinyk, V. Levashenko, E. Zaitseva . Communications. 2016. Vol.3. P.3-11.
- Nakib A., Talbi El-G. Metaheuristics for Medicine and Biology . Berlin: Springer-Verlag, 2017. 211 p.
- Engelbrecht A. P. Computational Intelligence: an introduction . Chichester, West Sussex: Wiley & Sons, 2007. 630 p. DOI: 10.1002/9780470512517.
- Yang X.-S. Nature-inspired Algorithms and Applied Optimization . Charm: Springer, 2018. 330 p. DOI: 10.1007/978-3-642-29694-9
- Martí R. Pardalos P. M.,. Resende M. G. C. Handbook of Heuristics . Charm: Springer, 2018. 1289 p. DOI: 10.1007/978-3-319-07124-4
- Blum C., Raidl G. R. Hybrid Metaheuristics. Powerful Tools for Optimization . Charm: Springer, 2016. 157 p. DOI: 10.1007/978-3-319-30883-8
- Yang X.-S. Optimization Techniques and Applications with Examples . Hoboken, New Jersey: Wiley & Sons, 2018. 364 p. DOI: 10.1002/9781119490616
- Chopard B., Tomassini M. An Introduction to Metaheuristics for Optimization . New York: Springer, 2018. 230 p. DOI: 10.1007/978-3-319-93073-2
- Radosavljević J. Metaheuristic Optimization in Power Engineering . New York: The Institution of Engineering and Technology, 2018. 536 p. DOI: 10.1049/PBPO131E
- Du K.-L., Swamy M. N. S. Search and Optimization by Metaheuristics. Techniques and Algorithms Inspired by Nature . Charm: Springer, 2016. 434 p. DOI: 10.1007/978-3-319-41192-7
- Bozorg Haddad O., Solgi M., Loaiciga H. Meta-heuristic and Evolutionary Algorithms for Engineering Optimization . Hoboken, New Jersey: Wiley & Sons, 2017. 293 p. DOI: 10.1002/9781119387053
- Alba E., Nakib A., Siarry P.. Metaheuristics for Dynamic Optimization . Berlin: Springer-Verlag, 2013. 398 p. DOI: 10.1007/978-3-642-30665-5
- Method For Parametric Identification Of Gaussian Mixture Model Based On Clonal Selection Algorithm / E. Fedorov, V. Lukashenko, T. Utkina, A. Lukashenko, K. Rudakov . CEUR Workshop Proceedings. 2019. Vol. 2353. P. 41-55.
- Grygor O. O. Optimization method based on the synthesis of clonal selection and annealing simulation algorithms / O. O. Grygor, E. E. Fedorov, T. Yu. Utkina, A. G. Lukashenko, K. S. Rudakov, D. A. Harder et al . Radio Electronics, Computer Science, Control. 2019. № 2. P. 90-99. DOI: 10.15588/1607-3274-2019-2-10.
- Spears W. M., Green D. T., Spears D. F. Biases in particle swarm optimization . International Journal of Swarm Intelligence Research. 2010. Vol. 1, No. 2. P. 34–57. DOI: 10.4018/jsir.2010040103
- Review of Artificial Fish Swarm Optimization Methods and Applications / M. Neshat, A. Adeli, G. Sepidnam, M. Sargolzaei, A. N. Toosi. International Journal on Smart Sensing and Intelligent Systems. 2012. Vol. 5, No. 1. P. 107–148. DOI: 10.21307/ijssis-2017-474