DOI: https://doi.org/10.32515/2664-262X.2022.6(37).1.119-126

Energy Efficiency of Solid Vegetable Waste Shredding System for Biofuel Pellets Production

Ruslan Teliuta, Vasyl Klymenko, Оleksandr Skrypnyk, Anna Teliuta

About the Authors

Ruslan Teliuta, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: teliutarv@gmail.com, ORCID ID: 0000-0002-4923-1227

Vasyl Klymenko, Professor, Doctor in Technics (Doctor of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: klymvas@ukr.net, ORCID ID: 0000-0001-6840-7307

Оleksandr Skrypnyk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: skripnik1966@ukr.net, ORCID ID: 0000-0003-1479-3120

Anna Teliuta, Lecturer, Kropyvnytskyi Agricultural Vocational College, Kropyvnytskyi, Ukraine, e-mail: annateliuta@gmail.com

Abstract

The production of biofuel pellets requires significant energy consumption during their production. At the primary technological stage of production: grinding of solid vegetable waste (SVW), electricity costs can be, depending on the physical and mechanical characteristics of SVW, 40… 60% of the total electricity consumed for the production of pellets. Significant losses of electric energy are observed during grinding due to uneven loading of the shredder and operation of the electric motor of its drive in constantly changing modes. This is especially true for small productions when downloading is done manually. This paper proposes a method and algorithm for determining the maximum values of the energy efficiency of the SRW grinding system for the production of biofuel pellets as a function of the load factor of the electric motor of the working machine at different values of applied voltage. As a result of research of an asynchronous electric motor with a nominal power of 4 kW SVW shredder during its operation according to the loading schedule during the eight-hour work shift provided by the farm, it was determined that control of applied voltage at variable loads will reduce energy consumption and increase the energy efficiency of the shredder by 4…6%. According to the results of research, it is proposed to develop a device for controlling the magnitude of the applied voltage at variable loads, the implementation of which will reduce energy consumption by the shredder drive. The proposed technique can also be used in the diagnosis of the electric motor of the shredder, which is in the process of operation of the technological line of production of pellets.

Keywords

energy efficiency, biofuel pellets, electric motor, solid vegetable waste shredder

Full Text:

PDF

References

1. Klymenko, V.V., Kravchenko, V.I., Bokov, V.I. & Hutsul, V.I. (2017). Tekhnolohichni osnovy vyhotovlennia biopalyva z roslynnykh vidkhodiv ta yikh kompozytiv [Technological bases of biofuel production from vegetable waste and their composites]. Kropyvnytskyi: PE "Exclusive-System" [in Ukrainian].

2. Stelte, W., Sanadi, A. R., Shang, L., Holm, J. K., Ahrenfeldt, J., & Henriksen, U. B. (2012). Recent developments in biomass pelletization - A review, BioRes, 7(3), рр.4451-4490. Retrieved from https://bioresources.Cnr.ncsu.edu/resources/recent-developments-in-biomass-pelletization-a-review/.

3. Ovcharov, S.V. & Strebkov, A.A. (2017). Issledovaniye poter aktivnoy energii v asinkhronnom elektrodvigatele v ekspluatatsionnykh usloviyakh [Study of active energy losses in an asynchronous electric motor under operating conditions]. Vostochno-Evropeyskiy zhurnal peredovykh tekhnologiy. – East European Journal of Advanced Technologies, 2, 8 (84), 22-28 [in Ukrainian].

4. Postnikova, M.V. & Teliuta, R.V. (2011). Issledovanie poter aktivnoj moshhnosti v sisteme «jelektrodvigatel – rabochaya mashina» elektrodvigatele [Study of active power losses in the electric motor-working machine system]. Pratsi Tavriiskoho derzhavnoho ahrotekhnolohichnoho universytetu. – Practice of the Taurian State Agrotechnological University, Vol. 11, 3, 165-172 [in Ukrainian].

5. Ovcharov, S.V. & Strebkov, A.A. (2015). Razrabotka metodiki energeticheskoy otsenki ekspluatatsionnykh rezhimov raboty silovogo elektrooborudovaniya [Development of a methodology for energy assessment of operating modes of power electrical equipment]. Tekhnologicheskiy audit i rezervy proizvodstva – Technological audit and production reserves, 3 (1), 21-26 [in Ukrainian].

6. Hung, N.T. et al. (2014). Energy in Three-Phase Induction Motor by Balancing of Torque and Flux Dependent Losses. Lecture Notes in Electrical Engineering, pp. 497-507 [in English].

7. Teliuta, A.V., Teliuta, R.V. & Kalich, V.M. (2021). Enerhozberihaiuchyi rezhym roboty asynkhronnoho elektrodvyhuna [Energy saving mode of operation of asynchronous electric motor]. – New technologies in agroengineering: problems and prospects of implementation (dedicated to the 55th anniversary of the founding of the Faculty of Engineering and Technology of Poltava State Agrarian University): I Vseukr. nauk.-prakt. internet-konf., (1-2 chervnia 2021 r.) – I All-Ukrainian. Scientific&Practical Internet conference (pp. 289-291). Poltava. PSAU [in Ukrainian].

8. Kvitka, S.O., Vovk, О. Yu., Strebkov, A.A. & Voloshyna, A.A. (2019). Enerhozberihaiuchi rezhymy roboty asynkhronnykh elektrodvyhuniv pry zminnomu zavantazhenni [Energy saving modes of operation of asynchronous electric motors at variable loading]. Pratsi Tavriiskoho derzhavnoho ahrotekhnolohichnoho universytetu – Practice of the Taurian State Agrotechnological University, Vol. 19, 3, 142-150 [in Ukrainian].

9. Bazaluk, O., Postnikova, M., Halko, S., Mikhailov, E., Kovalov, O., Suprun, O., ... & Nitsenko. (2022). Improving Energy Efficiency of Grain Cleaning Technology. Applied Sciences, 12 (10), 5190. рр.1-12. Retrieved from https://doi.org/10.3390/ app12105190 [in English].

Citations

  1. Технологічні основи виготовлення біопалива з рослинних відходів та їх композитів: монографія / Клименко В. В., Кравченко В. І., Боков В. М., Гуцул В. І. / за ред. В.В. Клименка. Кропивницький: ПП «Ексклюзив-Систем», 2017. 162 с.
  2. Recent developments in biomass pelletization - A review / Stelte, W., Sanadi, A.R., Shang, L., Holm, J.K., Ahrenfeldt, J., and Henriksen, U.B. BioRes. 2012, 7(3), P.4451-4490. https://bioresources.Cnr.ncsu.edu/resources/recent-developments-in-biomass-pelletization-a-review/.
  3. Овчаров С. В., Стребков А. А. Исследование потерь активной энергии в асинхронном электродвигателе в эксплуатационных условиях. Восточно-Европейский журнал передовых технологий. 2015. T. 2, № 8 (74). С. 22-28.
  4. Постникова М.В., Телюта Р.В. Исследование потерь активной мощности в системе «электродвигатель – рабочая машина». Праці Таврійського державного агротехнологічного університету. 2011. Вип. 11, т.3. С.165-172.
  5. Овчаров С. В., Стребков А. А. Разработка методики энергетической оценки эксплуатационных режимов работы силового электрооборудования. Технологический аудит и резервы производства. 2015. 3 (1). С. 21-26.
  6. Optimization of Electric Energy in Three-Phase Induction Motor by Balancing of Torque and Flux Dependent Losses / N. T. Hung [et al.] . Lecture Notes in Electrical Engineering. 2014. Р. 497-507.
  7. Телюта А. В., Телюта Р. В., Каліч В. М. Енергозберігаючий режим роботи асинхронного електродвигуна. Новітні технології в агроінженерії: проблеми та перспективи впровадження (присвячена 55-й річниці заснування інженерно-технологічного факультету Полтавського державного аграрного університету) : матеріали І Всеукр. наук.-практ. інтернет-конф., 1-2 червня 2021 р. Полтава. ПДАУ, 2021. С. 22-25.
  8. Енергозберігаючі режими роботи асинхронних електродвигунів при змінному завантаженні. / С.О. Квітка, О.Ю. Вовк, О.А. Стребков, А.А. Волошина. Праці Таврійського державного агротехнологічного університету. Технічні науки. 2019. Вип. 19, т. 3. С. 142-150.
  9. Improving Energy Efficiency of Grain Cleaning Technology / Bazaluk, O., Postnikova, M., Halko, S., Mikhailov, E., Kovalov, O., Suprun, O., Nitsenko, V. Applied Sciences, 12 (10), 5190. P.1-12. https://doi.org/10.3390/ app12105190.
Copyright (c) 2022 Ruslan Teliuta, Vasyl Klymenko, Оleksandr Skrypnyk, Anna Teliuta