DOI: https://doi.org/10.32515/2664-262X.2022.6(37).1.100-109

Shaping up Thermophysical and Energy Characteristics of Buildings During Thermal Modernization of Enclosing Structures

Ivan Savelenko, Kateryna Petrova, Sergiy Serebrennikov, Oleksandr Sirikov

About the Authors

Ivan Savelenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: ivan.savelenko@gmail.com, ORCID ID: 0000-0002-0078-5755

Kateryna Petrova, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: kateflash27@gmail.com, ORCID ID: 0000-0002-1928-6833

Sergiy Serebrennikov, Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: sv.serebrennikov@gmail.com, ORCID ID: 0000-0002-9910-6651

Oleksandr Sirikov, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: asirikov@i.ua, ORCID ID: 0000-0002-7058-2697

Abstract

The purpose of the work is to study of options for thermal modernization of enclosing structures with a justification of the optimal composition of energy-saving measures to achieve maximum energy efficiency of buildings. Ukraine's energy balance shows that more than 30% of the total energy is consumed by the residential sector, of which up to 80% goes to heating. This is due to the low level of energy efficiency of the enclosing structures of residential buildings, as well as the unsatisfactory technical condition of utilities, due to physical wear and tear and obsolescence. The peculiarities of the influence of the type of thermal insulation materials and their characteristics on the thermal and energy performance of the building are investigated. It was found that the increase in the density of insulation affects the thermal resistance of walls in different ways - the density of mineral wool and extruded polystyrene have the opposite effect of foamed polystyrene, ie insulation of mineral wool or extruded polystyrene should be chosen with the lowest density Element-by-element analysis of the components of enclosing structures proved that their impact differs significantly, in the case of separate implementation of measures can reduce heat consumption by 0.07… 23%, and the priority is to modernize the walls of building facades (provided that the glazing ratio K ≤ 0 , 25). Measures of complex thermal modernization of enclosing structures are substantiated by the method of expert assessments according to technical-energy, financial and ecological criteria. Calculations confirm that the complex thermal modernization will reduce the value of specific energy consumption and specific greenhouse gas emissions by 1.5 times, specific heat consumption - by 1.9 times, increase the energy efficiency class of the building from G to D. It is shown that the normative values of heat transfer resistances of external enclosing structures will provide only the class D energy efficiency of the building. It is not possible to achieve the recommended class "C" and higher by further increasing the thermal resistance of the enclosing structures - it is necessary to modernize the engineering systems of the building.

Keywords

thermal modernization, enclosing constructions, thermophysical indicators, energy efficiency of the building

Full Text:

PDF

References

1. DBN V.2.6-31:2016. Teplova izoliatsiia budivel. [National Standard 2.6–31:2016. thermal insulation of buildings]. Kyiv, Minregion Ukrai'ny, 2016. 30 p. [in Ukrainian].

2. Fareniuk, H.H., Filonenko, O.I., Oleksiienko, O.B. & Leshchenko, M.V. (2013). Osoblyvosti kompleksnoi termomodernizatsii hromadskykh budivel [Features of complex thermo-modernization of public buildings]. Visnyk Odeskoi derzhavnoi akademii budivnytstva ta arkhitektury - Bulletin of Odessa State Academy of Civil Engineering and Architecture Collection of Scientific Works, 49, 232–238. [in Ukrainian].

3. Yeromin, A. & Kolosov, A. (2018). Modeling of energy efficient solutions regarding the heating system and the facade heat insulation in the implementation of thermomodernization. Eastern–European Journal of Enterprise Technologies, 1 (8(91)), 49–57. doi:10.15587/1729–4061.2018.123021 [in English].

4. Foshch, A.V. (2016). Termomodernizatsiia budivel – resurs enerhozberezhennia v Ukraini [Thermal modernization of buildings is a resource of energy saving in Ukraine]. Visnyk Odeskoi derzhavnoi akademii budivnytstva ta arkhitektury - Bulletin of Odessa State Academy of Civil Engineering and Architecture Collection of Scientific Works, 65, 137–141. [in Ukrainian].

5. Zender-Swiercz, E., Piotrowski, J. (2013). Thermomodernization a building and its impact on the indoor microclimate. Structure and Environment: Architecture. Civil Engineering. Environmental Engineering and Energy. 5, 3, 37-40. [in Ukrainian].

6. Weglarz, A. & Gilewski, P. A (2016). Method of Evaluation of Polioptimal Thermo¬modernization Schemes of Buildings. Procedia Engineering, 53, 862–865. doi:10.1016/j.proeng.2016.08.194 [in English].

7. Plieshkov, P.G., Serebrennikov, S.V., Petrova, K.G. & Savelenko, I.V. (2019). Problemy vyznachennia efektyvnosti ta ranzhuvannia enerhooshchadnykh zakhodiv na obiektakh biudzhetnoi sfery [Problems of determining the efficiency and ranking of energy-saving measures at the objects of the budget sphere]. Tsentralnoukrainskyi naukovyi visnyk. Tekhnichni nauky- Central Ukrainian Scientific Bulletin. Technical Sciences, 1 (32), 166-172. [in Ukrainian].

Citations

  1. ДБН В.2.6-31:2016. Теплова ізоляція будівель. [Чинний від 2016-07-08]. Київ, 2016. 30 с. (Національний стандарт України).
  2. Фаренюк Г.Г., Філоненко О. І., Олексієнко О. Б., Лещенко М. В.Особливості комплексної термомодернізації громадських будівель. Вісник Одеської державної академії будівництва та архітектури. 2013. Вип. 49. С. 232 – 238.
  3. Yeromin A., Kolosov A. Modeling of energy efficient solutions regarding the heating system and the facade heat insulation in the implementation of thermomodernization. Eastern-European Journal of Enterprise Technologies. 2018. Vol. 1, No. 8 (91). P. 49–57. DOI:10.15587/1729–4061.2018.123021
  4. Фощ А.В. Термомодернізація будівель – ресурс енергозбереження в Україні. Вісник Одеської державної академії будівництва та архітектури. 2016. Вип. 65, C. 137 – 141.
  5. Zender-Swiercz E., Piotrowski J. Thermomodernization a building and its impact on the indoor microclimate. Structure and Environment: Architecture. Civil Engineering, Environmental Engineering and Energy. 2013. Vol. 5, No. 3. P. 37–40.
  6. Weglarz A., Gilewski P. A Method of Evaluation of Polioptimal Thermo¬modernization Schemes of Buildings. Procedia Engineering. 2016.Vol. 153. P. 862–865. DOI:10.1016/j.proeng.2016.08.194
  7. Плєшков П.Г., Серебренніков С.В., Петрова К.Г., Савеленко І.В, Сіріков О.І. Проблеми визначення ефективності та ранжування енергоощадних заходів на об'єктах бюджетної сфери. Центральноукраїнський науковий вісник. Технічні науки: зб.наук. пр. 2019. Вип. 1 (32). С. 166 –172.
Copyright (c) 2022 Ivan Savelenko, Kateryna Petrova, Sergiy Serebrennikov, Oleksandr Sirikov