DOI: https://doi.org/10.32515/2664-262X.2022.6(37).1.3-8

Investigation of the Stress-strain State of Ion-nitrogen-coated Specimens Under Conditions of Isothermal and Thermocyclic Creep by Finite Element Analysis

Anatoly Rutkovskіy, Sergiy Markovych, Sergiy Myhajlyta

About the Authors

Anatoly Rutkovskіy, PhD in Technics (Candidate of Technics Sciences), Senior Researcher, National Academy of sciences of Ukraine G.S. Pisarenko institute for problems of strength, Kyiv, Ukraine, e-mail: coating@ipp.kiev.ua

Sergiy Markovych, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: marko60@ukr.net, ORCID ID: 0000-0003-1393-2360

Sergiy Myhajlyta, post-graduate , Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: sergejmihajluta2@gmail.com

Abstract

One of the advanced methods of increasing the thermal stability of the pistons of internal combustion engines is ionic nitriding (ion-plasma nitriding). At the same time, the study of the stress - strain state of a sample of aluminum alloy with heat - protective diffusion ion - nitrided layers under conditions of thermocyclic loading (simultaneous action of load and temperature) is an urgent task. The application of the finite element analysis method makes it possible to predict the operation of the parts of the cylinder-piston group, namely the time and place of the crack when the load and temperature change. When calculating the stress-strain state, the peculiarities of their geometric parameters, properties of structural material, type of calculation (static, thermal, etc.), and conditions of force and temperature load acting on them were taken into account. The calculation was performed using real experimental samples. The method of calculating the stress-strain state of the composition "base - coating" taking into account operational and technological factors consists of several stages: solving the problem of non-stationary thermal conductivity to determine the residual stresses resulting from coating; determination of stresses from power and temperature load; obtaining the stress-strain state by the method of superposition. Using the finite element analysis method, the stress-strain state of the aluminum sample was evaluated, both without hardening and with a heat-protective diffusion ion-nitrided surface layer from simultaneous exposure to load and temperature, namely under conditions of thermocyclic creep. To more accurately determine the equivalent stresses, the calculations were performed on 1/8 of the sample. Comparative evaluation of the stress-strain state of 1/8 of the sample of aluminum alloy AL21 and with a reinforced surface layer was performed using the software package NASTR. Thus, based on the analysis of the stress - strain state of the aluminum alloy sample with heat - protective diffusion ion - nitrided layers under thermocyclic loading (simultaneous action of load and temperature) it is established that a significant part of equivalent stresses is perceived by the strengthened surface layer. This confirms the increase in the resistance of the composition "base-coating" of both isothermal and thermocyclic creep. In addition, with the help of the finite element analysis method, it is possible to predict the operation of the parts of the cylinder-piston group, namely the time and place of the crack when the load and temperature change.

Keywords

stress-strain state, method of finite-element analysis, base, coating, isothermal and thermocyclic creep

Full Text:

PDF

References

1. Liashenko, B.A., Markovych, S.I. & Mykhajliuta, S.S. (2017). Rozrobka tekhnolohichnoho protsesu vakuumnoho azotuvannia porshniv dvyhuniv v pul'suiuchomu puchku plazmy [Development of the Technological Process of Vacuum Nitriding of Engine Pistons in the Pulsating Plasma Beamt]. Konstrujuvannja, vyrobnyctvo ta ekspluatacija silʹsʹkohospodarsʹkyx mashyn – Design, manufacture and operation of agricultural machinery, Issue 47, part 1, 158-166 [in Ukrainian].

2. Rutkovs'kyj, A.V. Markovych, S.I. & Mykhajliuta, S.S. (2020). Teplostijkist' ionnoazotovanykh aliuminiievykh splaviv pry izotermichnomu ta termotsyklichnomu vplyvi [] . Tsentral'noukrains'kyj naukovyj visnyk. Tekhnichni nauky – Central Ukrainian Scientific Bulletin. Technical Sciences, Issue 3(34). 72-81 [in Ukrainian].

3. Mirnenko, V.I. Rutkovs'kyj, A.V. & Zenkin, M.A. (2004). Avtomatyzovana systema kontroliu ta upravlinnia doslidzhenniam izotermichnoi ta termotsyklichnoi povzuchosti [Automated system of control and management of research of isothermal and thermocyclic creep]. Tekhnolohycheskye systemy – Technological systems, 3, 69-72 [in Ukrainian].

4. Mjachenkov, V.I., Mal'cev, V.P., Majboroda, V.P. et al. (1989). Raschety mashinostroitel'nyh konstrukcij metodom konechnih zlementov [Calculations of machine-building structures by the finite element method] . Moskow: Mashinostroenie [in Russian].

5. Shimkovich, D.G. (2004). Raschet konstrukcij v MSC. visualNastran for Windows. [Structural analysis in MSC. VisualNastran for Windows.]. Moskow: DMK Press [in Russian].

6. Shimkovich, D.G. (2001). Raschet konstrukcij MSC/NASTRAN for Windows. [Calculation of structures. MSC/NASTRAN for Windows.]. Moskow: DMK Press [in Russian].

7. Kostjuk, G.I. (2002). Fiziko-tehnicheskie osnovy nanesenija pokrytij, ionnoj implantacii i ionnogo legirovanija, lazernoj obrabotki i uprochnenija, kombinirovannyh tehnologij. Kniga 1: Fizicheskie processy plazmenno-ionnyh, ionno-luchevyh, plazmennyh, svetoluchevyh i kombinirovannyh tehnologij. [Physical and technical bases of coating, ion implantation and ion doping, laser processing and hardening, combined technologies. Book 1: Physical processes of plasma-ion, ion-beam, plasma, light-beam and combined technologies]. Kh.: ANNU [in Russian].

8. Kostjuk, G.I. (2002). Fiziko-tehnicheskie osnovy nanesenija pokrytij, ionnoj implantacii i ionnogo legirovanija, lazernoj obrabotki i uprochnenija, kombinirovannyh tehnologij. Kniga 2: Spravochnik dlja rascheta osnovnyh fizicheskih i tehnologicheskih parametrov ocenki vozmozhnostej i vybora tipa tehnologij i oborudovanija. [Physical and technical bases of coating, ion implantation and ion doping, laser processing and hardening, combined technologies. Book 2: Handbook for calculating the main physical and technological parameters for assessing the possibilities and choosing the type of technologies and equipment] . Kh.: ANNU [in Russian].

Citations

  1. Ляшенко Б.А., Маркович С.І., Михайлюта С.С. Розробка технологічного процесу вакуумного азотування поршнів двигунів в пульсуючому пучку плазми . Конструювання, виробництво та експлуатація сільськогосподарських машин: . 2017. Вип. 47, ч. 1. С. 158-166.
  2. Рутковський А.В., Маркович С.І., Михайлюта С.С. Теплостійкість іонноазотованих алюмінієвих сплавів при ізотермічному та термоциклічному впливі . Центральноукраїнський науковий вісник. Технічні науки. 2020. Bип. 3(34). С. 72-81.
  3. Мірненко В.І., Рутковський А.В., Зенкін М.А. Автоматизована система контролю та управління дослідженням ізотермічної та термоциклічної повзучості . Технологические системы. 2004. №3. С. 69-72.
  4. Расчеты машиностроительных конструкций методом конечних злементов / В.И. Мяченков и др. М.: Машиностроение, 1989. 576 с.
  5. Шимкович Д.Г. Расчет конструкций в MSC. visualNastran for Windows. М.: ДМК Пресс, 2004. 704 с.
  6. Шимкович Д.Г. Расчет конструкций MSC/NASTRAN for Windows. М.: ДМК Пресс, 2001. 448 с.
  7. Костюк Г.И. Физико-технические основы нанесения покрытий, ионной имплантации и ионного легирования, лазерной обработки и упрочнения, комбинированных технологий. Книга 1: Физические процессы плазменно-ионных, ионно-лучевых, плазменных, светолучевых и комбинированных технологий. X.: АННУ, 2002. 588 с.
  8. Костюк Г.И. Физико-технические основы нанесения покрытий, ионной имплантации и ионного легирования, лазерной обработки и упрочнения, комбинированных технологий. Книга 2: Справочник для расчета основных физических и технологических параметров оценки возможностей и выбора типа технологий и оборудования. X.: АННУ, 2002. 442 с.
Copyright (c) 2022 Anatoly Rutkovskіy, Sergiy Markovych, Sergiy Myhajlyta