DOI: https://doi.org/10.32515/2664-262X.2022.5(36).1.176-182

Metrological Control of Technical Characteristics Evaluation of Building Materials and Products

Viktor Pashynskyi, Mykola Pashynskyi, Viktor Darienko

About the Authors

Viktor Pashynskyi, Professor, Doctor in Technics (Doctor of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: pva.kntu@gmail.com, ORCID ID: 0000-0002-5474-6399

Mykola Pashynskyi, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, ORCID ID: 0000-0002-2669-523X

В.В. Дарієнко, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: vvdarienko@gmail.com, ORCID ID: 0000-0001-9023-6030

Abstract

The problem of assessing the possible relative errors of the technical characteristics of building materials when testing samples of the correct geometric shape has been solved. The work is based on the theory of errors and on the method of linearization of functions of random variables. The technical characteristics of the materials are determined by the equations of indirect measurements through the input parameters, directly measured during the tests with known level of accuracy. Linearization of the equations of indirect measurement allowed to obtain dependences for determining the standard and probable relative errors of determining the average density, humidity, water absorption and compressive strength of building materials. Samples of the correct geometric shape of the following types are considered: cube, parallelepiped, circular cylinder. The input values of the obtained formulas are the size and weight of the samples, as well as the destructive force during compression. The accuracy of direct measurement of these values is determined by the values of division of the corresponding measuring instruments. The obtained formulas give possible relative errors of indirect measurements of the analyzed technical characteristics corresponding to the given two-way security level. The use of the obtained formulas allows you to reasonably choose the means for measuring the input parameters that provide the necessary accuracy of the results of determining the technical characteristics with the maximum ease of performing the measurements. The method for assessing the accuracy and the choice of measuring instruments for measuring the size and mass of samples is illustrated by an example of determining the average density of a mortar based on the results of testing cubic samples of different sizes. The results of the study can be used in the experimental determination of the analyzed technical characteristics of building materials of other types, as well as extended to assess the accuracy of other technical characteristics, which are determined by indirect methods.

Keywords

building materials, technical characteristics, testing of materials, probable errors

Full Text:

PDF

References

1. Derzhavnyy standart Ukrayiny. Rozchyny budivelʹni. Metody vyprobuvanʹ. [State standard of Ukraine. Building solutions. Test methods.]. (2010). DSTU B V.2.7-239: 2010 (EN 1015-11:1999, NEQ). Kyiv: Ministerstvo budivnytstva Ukrainy [in Ukrainian].

2. Derzhavnyy standart Ukrayiny. Betony. Metody vyznachennya mitsnosti za kontrolʹnymy zrazkamy [State standard of Ukraine. Concrete. Methods for determining the strength of control samples]. (2010). DSTU B V.2.7-214:2009. Kyiv : Ministerstvo budivnytstva Ukrainy [in Ukrainian].

3. Derzhavnyy standart Ukrayiny. Budivelʹni materialy. Metody vyznachennya vodopohlynannya, hustyny i morozostiykosti budivelʹnykh materialiv i vyrobiv [State standard of Ukraine. Building materials. Methods for determination of water absorption, density and frost resistance of building materials and products]. (1997). DSTU B V.2.7-42-97. Kyiv : Derzhkommistobuduvannya [in Ukrainian].

4. Pashynskyi, V.A. & Sidey, V.M. (2012). Eksperymentalʹno-statystychni doslidzhennya tekhnichnykh kharakterystyk budivelʹnykh materialiv [Experimental and statistical studies of technical characteristics of building materials] . Resursoekonomni materialy, konstruktsiyi, budivli ta sporudy : zb. nauk. pratsʹ – Resource-saving materials, structures, buildings and structures: Collection of scientific works, Issue 24, 24-30 [in Ukrainian].

5. Pashynskyi, V.A. & Sidey, V.M. (2013). Vplyv volohosti na kharakterystyky morozostiykosti budivelʹnoyi keramiky [Influence of humidity on frost resistance characteristics of building ceramics] // Resursoekonomni materialy, konstruktsiyi, budivli ta sporudy : zb. nauk. pratsʹ – Resource-saving materials, structures, buildings and structures: Collection of scientific works, Issue 26, 331337 [in Ukrainian]

6. Pashynskyi, V.A. & Sidey, V.M. (2014). Dovhovichnistʹ tsehlyanykh stin v klimatychnykh umovakh Ukrayiny [Durability of brick walls in climatic conditions of Ukraine] . Resursoekonomni materialy, konstruktsiyi, budivli ta sporudy : zb. nauk. pratsʹ – Resource-saving materials, structures, buildings and structures: Collection of scientific works, Issue 29, 468474 [in Ukrainian]

7. ЕА-4/02 М : 2013. (2013). Expression of measurement uncertainty during calibration. European Accreditation Association. naau.org.ua. Retrieved from: https://naau.org.ua/wp-content/uploads/2015/06/EA-4_02.pdf

8. RMG 43-2001. (2002). Primeneniye "Rukovodstva po vyrazheniyu neopredelennosti izmereniy" [Application of "Guidelines for the Expression of Uncertainty of Measurements"] . Mezhgosudarstvennyy sovet po standartizatsii, metrologii i sertifikatsii – Interstate Council for Standardization, Metrology and Certification. Minsk: Publishing house of standards [in Russian]

9. Podzharenko, V.O., Vasilevskyi, O.M. & Kucheruk, V.Yu. (2008). Opratsyuvannya rezulʹtativ vymiryuvanʹ na osnovi kontseptsiyi nevyznachenosti [Elaboration of measurement results based on the concept of uncertainty]. Vinnitsa: VNYU. [in Ukrainian].

10. Wentzel, E.S. (2018). Teoriya veroyatnostey [Probability theory]. (Issue 12). Moskow : Higher School [in Russian].

GOST Style Citations

  1. ДСТУ Б В.2.7-239:2010 (EN 1015-11:1999, NEQ). Розчини будівельні. Методи випробувань. Київ: Мінрегіонбуд України. 2010. 34 с. (Державний стандарт України).
  2. ДСТУ Б В.2.7-214:2009. Державний стандарт України. Бетони. Методи визначення міцності за контрольними зразками. Київ: Мінрегіонбуд України. 2010. 43 с.
  3. ДСТУ Б В.2.7-42-97. Будiвельнi матерiали. Методи визначення водопоглинання, густини i морозостiйкостi будiвельних матерiалiв i виробiв. Київ: Держкоммiстобудування України. 1997. 22 с. (Державний стандарт України).
  4. Пашинський В. А., Сідей В. М. Експериментально-статистичні дослідження технічних характеристик будівельних матеріалів . Ресурсоекономні матеріали, конструкції, будівлі та споруди : зб. наук. праць. 2012. Вип. 24. С. 24-30.
  5. Пашинський В. А., Сідей В. М. Вплив вологості на характеристики морозостійкості будівельної кераміки . Ресурсоекономні матеріали, конструкції, будівлі та споруди : зб. наук. праць. 2013. Вип. 26. С. 331337.
  6. Пашинський В. А., Сідей В. М. Довговічність цегляних стін в кліматичних умовах України . Ресурсоекономні матеріали, конструкції, будівлі та споруди : зб. наук. праць. 2014. Вип. 29. С. 468474.
  7. ЕА-4/02 М : 2013. Вираз невизначеності вимірювання при калібруванні. Європейська асоціація з акредитації. 2013. 73 с. URL: https://naau.org.ua/wp-content/uploads/2015/06/EA-4_02.pdf (дата звернення: 17.11.2021)
  8. РМГ 43-2001. Применение "Руководства по выражению неопределенности измерений" Межгосударственный совет по стандартизации, метрологии и сертификации. Минск: Издательство стандартов, 2002. 20 с.
  9. Поджаренко В. О., Васілевський О. М., Кучерук В. Ю. Опрацювання результатів вимірювань на основі концепції невизначеності: навч. посіб. Вінниця: ВНТУ, 2008. 128 с.
  10. Вентцель Е.С. Теория вероятностей. 12-е изд., стер. М. : Высшая школа. 2018. 658 с.
Copyright (c) 2022 Viktor Pashynskyi, Mykola Pashynskyi, Viktor Darienko