DOI: https://doi.org/10.32515/2664-262X.2022.5(36).1.154-160

Experimental Studies of a Two-jet Method of Protection of Molten Metal During Surfacing in CO2

Viktor Dubovyk, Olexandr Puzyrov, Yuriy Nevdakha, Viktor Pukalov

About the Authors

Viktor Dubovyk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, ORCID ID: 0000-0002-0372-1108

Olexandr Puzyrov, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, ORCID ID: 0000-0002-2158-3714

Yuriy Nevdakha, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: uanevdakha@ukr.net, ORCID ID: 0000-0003-4355-4065

Viktor Pukalov, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: Pukalovvictor@gmail.com, ORCID ID: 0000-0002-0848-5861

Abstract

In the industry of restoration of details and production of designs from low-carbon and low-alloy steels the technology of welding by an electrode of continuous section which melts in the environment of carbon dioxide has become widespread. Welding and surfacing in shielding gases ranks first in terms of the amount of weld metal and manufactured products among other mechanized arc welding methods. Today, the need for wires for welding in shielding gases is about 200 thousand tons. Today's requirements indicate that welding technologies in shielding gases will occupy a leading position for the next 15 to 20 years. This is due to the relatively low cost of materials for surfacing, high performance properties of the obtained coatings, the ability to monitor the surfacing processes and make certain adjustments directly during surfacing. Along with the advantages of surfacing in a protective gas, there are also disadvantages: increased spraying of the metal, the difficulty of increasing the productivity of the process, limited control over the physicochemical properties of the coating metal in particular its deoxidation and alloying. These shortcomings are partially eliminated by the use of flux-cored wires and powdered fluxes, which are introduced into the combustion zone of the arc. The main problem is the ingress of air into the combustion zone of the arc and the interaction of air nitrogen with molten metal, which negatively affects the quality of the latter. Modern technologies of arc welding and surfacing are based on the creation of effective gas protection of the weld material from the penetration of air into the area of molten metal. Physical protection is the expulsion of air from the combustion zone of the arc - the zone of melting of the metal by supplying under pressure from the nozzle of the shielding gas burner. Therefore, the paper considers various ways to protect the melting zone of the metal by expelling air from the combustion zone of the arc. The results of comparative studies of the protective properties of the gas jet of burners of different designs are presented. The technological scheme of protection with two-speed CO2 jet by burners of conical and cylindrical section is considered. Recommendations for the velocity parameters of the shielding gas flowing from the central and peripheral cross-section of the burner are given. Research is aimed at ensuring effective protection of molten metal from air nitrogen, as well as reducing the consumption of shielding gas.

Keywords

welding, surfacing, seam, coating, shielding gas, gas shielding, electric arc, thermal zone, potential core

Full Text:

PDF

References

1. Novozhilov, N.M. (1979). Osnovy` metallurgii dugovoj svarki v gazakh [Fundamentals of Metallurgy of Arc Welding in Gases]. Moskow: Mashinostroenie [in Russian].

2. Pokhodnya, I.K. (1972). Gazy v svarnykh shvakh [Gases in welds]. Moskow: Mashinostroenie [in Russian].

3. Abramovich, G.N., Krasheninnikov, S.Yu., Sekundov, A.N. et al. (1974). Turbulentnoe smeshenie gazovy`kh struj [Turbulent mixing of gas jets]. Moskow: Nauka [in Russian].

4. Stepanov, V.V., Nechaev, V.I., Fofanov, A.A. et al. (1976). Vliyanie formy` sopla i kharaktera istecheniya gazovogo potoka na kachestvo zashhity` svarnogo shva [Influence of the shape of the nozzle and the nature of the outflow of the gas flow on the quality of the protection of the weld]. Svarochnoe proizvodstvo – Welding production, 6, 34-36 [in Russian].

5. Bagryanskij, K.V., Dobrotina, Z.A. & Khrenov, K.K. (1976). Teoriya svarochny`kh proczessov [Theory of welding processes]. Kiev: Vy`sshaya shkola [in Russian].

6. Ardentov, V.V. & Fedorenko, G.A. (1973). O strujnoj zashhite pri gazo e`lektricheskoj svarke [On jet protection in gas-electric welding]. Svarochnoe proizvodstvo – Welding production, I, 3-5 [in Russian].

7. Bezbakh, D.K. (1974). Svarka na otkry`ty`kh ploshhadkakh v sudostroenii i sudoremonte [Welding in open areas in shipbuilding and ship repair.]. Leningrad: Sudostroenie [in Russian].

8. A.s. 856710 (USSR). Bazhenov V.V., Trusov A.G., Ovchinnikov V.A, et al. (1981). Sposob dugovoj svarki [Arc welding method]. Opubl. v B.I., № 31.

GOST Style Citations

  • Новожилов Н. М. Основы металлургии дуговой сварки в газах. М. : Машиностроение, 1979. 232 с.
  • Походня И. К. Газы в сварных швах. М. : Машиностроение, 1972. 256 с.
  • Турбулентное смешение газовых струй / Абрамович Г. Н. и др.). М.: Наука, 1974. 272 с.
  • Влияние формы сопла и характера истечения газового потока на качество защиты сварного шва / Степанов В. В. и др. Сварочное производство. 1976. № 6. С. 34-36.
  • Багрянский К. В., Добротина З. А., Хренов К. К. Теория сварочных процессов. К. : Высшая школа, 1976. 423 с.
  • Ардентов В. В, Федоренко Г.А. О струйной защите при газо электрической сварке. Сварочное производство. 1973. № I. С. 3-5.
  • Безбах Д. К. Сварка на открытых площадках в судостроении и судоремонте. Л. : Судостроение, 1974. 135 с.
  • А.с. 856710 (СССР). Способ дуговой сварки /Баженов В. В., Трусов А. Г., Овчинников В. А. и др. Опубл. в Б.И., I981. № 31.
  • Copyright (c) 2022 Viktor Dubovyk, Olexandr Puzyrov, Yuriy Nevdakha, Viktor Pukalov