DOI: https://doi.org/10.32515/2664-262X.2021.4(35).88-93
Optimal control of nonlinear stationary systems at infinite control time
About the Authors
Borys Goncharenko, Professor, Doctor in Technics (Doctor of Technics Sciences), National University of Food Technologies, Kyiv, Ukraine, e-mail: goncharenkobn@i.ua, ORCID ID: 0000-0003-3931-5651
Larysa Vikhrova, Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropivnitsky, Ukraine, e-mail: vihrovalg@ukr.net, ORCID ID: 0000-0002-4016-673X
Mariia Miroshnichenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropivnitsky, Ukraine
Abstract
The article presents a solution to the problem of control synthesis for dynamical systems described by linear differential equations that function in accordance with the integral-quadratic quality criterion under uncertainty. External perturbations, errors and initial conditions belong to a certain set of uncertainties. Therefore, the problem of finding the optimal control in the form of feedback on the output of the object is presented in the form of a minimum problem of optimal control under uncertainty. The problem of finding the optimal control and initial state, which maximizes the quality criterion, is considered in the framework of the optimization problem, which is solved by the method of Lagrange multipliers after the introduction of the auxiliary scalar function - Hamiltonian. The case of a stationary system on an infinite period of time is considered. The formulas that can be used for calculations are given for the first and second variations.
It is proposed to solve the problem of control search in two stages: search of intermediate solution at fixed values of control and error vectors and subsequent search of final optimal control. The solution of -optimal control for infinite time taking into account the signal from the compensator output is also considered, as well as the solution of the corresponding matrix algebraic equations of Ricatti type.
Keywords
minimax control, robustness, systems with uncertainties, optimization, matrix form
Full Text:
PDF
References
1. Balandin, D.V. & Kogan, M.M. (2007). Sintez zakonov upravlenija na osnove linejnyh matrichnyh neravenstv [Synthesis of control laws based on linear matrix inequalities] . Moskow: Fizmatlit [in Russian].
2. Gantmaher, F.R. (2004). Teorija matric [Matrix theory]. Moskow: Fizmatlit [in Russian].
3. Poljak, B.T. & Hlebnikov, M.V. (2014). Upravlenie linejnymi sistemami pri vneshnih vozmushhenijah: Tehnika linejnyh matrichnyh neravenstv. Moskow: LENAND [in Russian].
4. Jakubovich, V.A. (1962). Reshenie nekotoryh matrichnyh neravenstv, vstrechajushhihsja v teorii avtomaticheskogo regulirovanija [Solution of some matrix inequalities found in automatic control theory]. DAN SSSR.. Vol. 143, 6, 1304-1307 [in Russian].
5. Boyd, S., El Ghaoui, L., Feron, E. & Balakrishnan, V. (1994). LinearMatrix Inequalities in System and Control Theory. Philadelphia: SIAM [in English].
6. Chilali, M. & Gahinet, P. (1996). design with pole placement constraints: An LMI approach. IEEE Trans. Automat. Contr, Vol.41, 358–367 [in English].
7. Ghaoui, L.E. & Niculescu, S.I. (2000). Advances in linear matrix inequality methods in control. Advances in Design and Control. Philadelphia, PA: SIAM [in English].
8. Masubuchi I., Ohara A., Suda N. (1998). LMI-based controller synthesis: A unified formulation and solution. Int. J. Robust Nonlinear Contr., Vol. 8, 669–686 [in English].
9. Lobok, O.P. Honcharenko, B.M. & Vikhrova, L.H. (2020). Zvedennia zadachi minimaksnoho keruvannia linijnymy nestatsionarnymy systemamy do robastnoho shliakhom dynamichnoi hry [Reducing the Problem of Minimax Control of Linear non-Stationary Systems to a - Robust One by the Way of Dynamic Game]. Tsentral'no ukrains'kyj naukovyj visnyk. Tekhnichni nauky – Central Ukrainian scientific Bulletin. Technical Sciences, Vol.3(34), 143 ̶ 162 [in Ukrainian]
GOST Style Citations
Баландин Д.В., Коган М.М. Синтез законов управления на основе линейных матричных неравенств . М.: Физматлит, 2007. 281 с.
Гантмахер Ф.Р. Теория матриц. М.: Физматлит, 2004. 560 с.
Поляк Б.Т., Хлебников М.В. Управление линейными системами при внешних возмущениях: Техника линейных матричных неравенств. М.: ЛЕНАНД, 2014. 560 с.
Якубович В.А. Решение некоторых матричных неравенств, встречающихся в теории автоматического регулирования . ДАН СССР. 1962. Т. 143, №6. С. 1304-1307.
Boyd S., El Ghaoui L., Feron E., Balakrishnan V. LinearMatrix Inequalities in System and Control Theory. Philadelphia: SIAM, 1994. 193 p.
Chilali M., Gahinet P. design with pole placement constraints: An LMI approach. IEEE Trans. Automat. Contr., 1996. Vol.41. Pp. 358–367.
Ghaoui L.E., Niculescu S.I. Advances in linear matrix inequality methods in control. Advances in Design and Control. Philadelphia, PA: SIAM, 2000. 372 p.
Masubuchi I., Ohara A., Suda N. LMI-based controller synthesis: A unified formulation and solution. Int. J. Robust Nonlinear Contr. 1998. Vol. 8. Pp. 669–686.
Лобок О.П., Гончаренко Б.М., Віхрова Л.Г. Зведення задачі мінімаксного керування лінійними нестаціонарними системами до робастного шляхом динамічної гри . Центрально український науковий вісник. Технічні науки. 2020. Вип..3(34). С.143-162.
Copyright (c) 2021 Borys Goncharenko, Larysa Vikhrova, Mariia Miroshnichenko
Optimal control of nonlinear stationary systems at infinite control time
About the Authors
Borys Goncharenko, Professor, Doctor in Technics (Doctor of Technics Sciences), National University of Food Technologies, Kyiv, Ukraine, e-mail: goncharenkobn@i.ua, ORCID ID: 0000-0003-3931-5651
Larysa Vikhrova, Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropivnitsky, Ukraine, e-mail: vihrovalg@ukr.net, ORCID ID: 0000-0002-4016-673X
Mariia Miroshnichenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropivnitsky, Ukraine
Abstract
Keywords
Full Text:
PDFReferences
1. Balandin, D.V. & Kogan, M.M. (2007). Sintez zakonov upravlenija na osnove linejnyh matrichnyh neravenstv [Synthesis of control laws based on linear matrix inequalities] . Moskow: Fizmatlit [in Russian].
2. Gantmaher, F.R. (2004). Teorija matric [Matrix theory]. Moskow: Fizmatlit [in Russian].
3. Poljak, B.T. & Hlebnikov, M.V. (2014). Upravlenie linejnymi sistemami pri vneshnih vozmushhenijah: Tehnika linejnyh matrichnyh neravenstv. Moskow: LENAND [in Russian].
4. Jakubovich, V.A. (1962). Reshenie nekotoryh matrichnyh neravenstv, vstrechajushhihsja v teorii avtomaticheskogo regulirovanija [Solution of some matrix inequalities found in automatic control theory]. DAN SSSR.. Vol. 143, 6, 1304-1307 [in Russian].
5. Boyd, S., El Ghaoui, L., Feron, E. & Balakrishnan, V. (1994). LinearMatrix Inequalities in System and Control Theory. Philadelphia: SIAM [in English].
6. Chilali, M. & Gahinet, P. (1996). design with pole placement constraints: An LMI approach. IEEE Trans. Automat. Contr, Vol.41, 358–367 [in English].
7. Ghaoui, L.E. & Niculescu, S.I. (2000). Advances in linear matrix inequality methods in control. Advances in Design and Control. Philadelphia, PA: SIAM [in English].
8. Masubuchi I., Ohara A., Suda N. (1998). LMI-based controller synthesis: A unified formulation and solution. Int. J. Robust Nonlinear Contr., Vol. 8, 669–686 [in English].
9. Lobok, O.P. Honcharenko, B.M. & Vikhrova, L.H. (2020). Zvedennia zadachi minimaksnoho keruvannia linijnymy nestatsionarnymy systemamy do robastnoho shliakhom dynamichnoi hry [Reducing the Problem of Minimax Control of Linear non-Stationary Systems to a - Robust One by the Way of Dynamic Game]. Tsentral'no ukrains'kyj naukovyj visnyk. Tekhnichni nauky – Central Ukrainian scientific Bulletin. Technical Sciences, Vol.3(34), 143 ̶ 162 [in Ukrainian]