DOI: https://doi.org/10.32515/2664-262X.2020.3(34).3-11

Computer Simulation of the Direct Pressing Process Through Various Matrix Funnel Profile

Volodymyr Sviatskyi, Oleksandr Skrypnyk, Serhii Kononchuk

About the Authors

Volodymyr Sviatskyi, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Oleksandr Skrypnyk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Serhii Kononchuk, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Abstract

The stressed and deformed state of the metal and the dimensions of the center of deformation during pressing depend significantly on the design of the tool and, in particular, on the shape of the matrix funnel. However, there is still no single point of view on the influence of the geometry of the deformation center on the energy forces of the metal pressing process. Based on the analysis of the field of slip lines of the steady-state stage of pressing through a symmetric single-point matrix, it is proposed to use the profile of the matrix funnel made along the slip line separating the elastic and plastic zones. The following types of matrix funnel profiles were investigated using computer simulation of direct extrusion of lead samples with a drawing value 81 at a speed of 1 mm/s: cycloid concave; convex; the second convex, which is built on the logarithmic dependence; conical and concave, which is built along a sliding line that separates the elastic zones from the plastic in the pressing process. The results of theoretical studies, computer simulations of the direct pressing process using the Deform 2D/3D software package, and experimental experiments have shown that optimal energy-power conditions are achieved by pressing through a matrix that has a profile made along the slip line. The results of the experimental study of the kinetics of the flow of the discrete medium showed that the shape of the matrix funnel influences the size of the deformation center and the distribution of the resulting deformation in the molding. From the analysis of deformation of the granules, it is determined that the concave funnel, built along the slip line, is characterized by a curvature of the axisymmetric particles in the direction of deformation. These curvatures decrease as the granules move to the axis of symmetry of the matrix. It is noted that for a convex funnel, the length of the deformation center is greatest; for a conical metal flow is close to the radial in the direction of the truncated cones.

Keywords

computer modeling, pressing, tool, matrix, profile, force, efficiency

Full Text:

PDF

References

1. Noricin, I.A., Akaro, I.L. & Perfilov, A.A. (1971). Vlijanie profilja matrichnoj voronki na parametry processa prjamogo pressovanija [The effect of the matrix funnel profile on the parameters of the direct extrusion process]. Kuznechno-shtampovochnoe proizvodstvo – Forging and stamping, 12, 1-8 [in Russian].

2. Safarov Ju.S. & Gerashhenko V.I. (1971). K voprosu o vybore optimal'noj geometrii instrumenta pri pressovanii [To the question of choosing the optimal tool geometry during pressing]. Kuznechno-shtampovochnoe proizvodstvo – Forging and stamping, 12, 8-11 [in Russian].

3. Shepel'skij, N.V. & Svjackij, V.V. (2000). Optimizacija profilja matrichnoj voronki dlja pressovanija [Optimization of the die profile for extrusion]. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem – Forging and stamping. Materials Forming, 8, 10-12 [in Russian].

4. Glebov, Ju.P. & Perlin, I.M. (1961). O forme uprugoj zony matricy pri pressovanii cherez odnokanal'nuju matricu [On the shape of the elastic zone of the matrix during pressing through a single-channel matrix]. Izvestija vuzov. Cvetnaja metallurgija – Proceedings of the universities. Non-ferrous metallurgy, 2, 27-30 [in Russian].

5. Noricyn, I.A. (1959). Analiz skorostnyh parametrov prjamogo pressovanija i volochenija [Analysis of speed parameters of direct pressing and drawing]. Processy shtampovki i ih tehnologicheskie parametry – Stamping processes and their technological parameters. Moskow: Mashgiz, 117-127 [in Russian].

6. Hill R. (1956). Matematicheskaja teorija plastichnosti [Mathematical Theory of Plasticity]. M.: GITTL [in Russian].

7. Baturin, A.I. (1970). Vlijanie tehnologicheskih parametrov na razmery i formu ochaga deformacii pri prjamom sposobe pressovanija aljuminievyh splavov cherez ploskuju matricu [The influence of technological parameters on the size and shape of the deformation zone in the direct method of pressing aluminum alloys through a flat matrix]. Kuznechno-shtampovochnoe proizvodstvo – Forging and stamping, 1, 6-8 [in Russian].

8. Dzhonson, V. & Kudo, H. (1956). Mehanika processa vydavlivanija metalla [Mechanics of the extrusion process]. M.: Metallurgija [in Russian].

9. Makushok, E.M., Matusevich, A.S., Severdenko, V.P. & Segal, V.M. (1968). Teoreticheskie osnovy kovki i obemnoj shtampovki [Theoretical Foundations of Forging and Volumetric Stamping]. Minsk: Nauka i tehnika, 408 [in Russian].

10. Shepel'skij, N.V. & Svjackij, V.V. (2000).Vybor racional'noj geometrii matrichnoj voronki dlja pressovanija [The choice o f rational geometry of the matrix funnel for pressing]. Fizika i tehnika vysokih davlenij – High Pressure Physics and Technology, 10, 4, 57-61[in Russian].

11. Shepel'skij, N.V. & Svjackij, V.V. (2000). Vlijanie geometrii ochaga deformacii na process poluchenija razobshhennyh volokon pri pressovanii lityh granul [The influence of the geometry of the deformation zone on the process of obtaining fragmented fibers during the extrusion of molding granulesy]. Zbirn. nauk. prats' DDMA. Udoskonalennia protsesiv ta obladnannia obrobky tyskom v metalurhii ta mashynobuduvanni – Collection of scientific works of DDMA. Improvement of processes and equipment of pressure treatment in metallurgy and mechanical engineering, 242-247 [in Russian].

12. Sviatskyi, V.V. (2020). Modeliuvannia protsesu priamoho presuvannia z vykorystanniam kryvolinijnykh profiliv matrychnykh lijok [Modeling of direct extrusion process using curved profiles of matrix funnels]. Lytvo. Metalurhiia. 2020: XVI mizhnarodna naukovo-tekhnichna konferentsiia – XVI International Scientific and Technical Conference. (pp. 294-296). Zaporizhzhia: sole proprietor Mokshanov V.V. [in Ukrainian].

13. Sviatskyi, V.V. (2020). Vplyv vohnyscha deformatsii na enerhosylovi parametry protsesu presuvannia [Effect of the Deformation Zone for Power Parameters of the Extrusion Process]. Organization of scientific research in modern conditions ‘2020. International Scientific and Practical Conference. (pp. 78-82). USA. Seattle: KindleDP [in Ukrainian].

14. Sviatskyi, V.V. (2020). Analiz modeliuvannia enerhosylovykh parametriv protsesu priamoho presuvannia [Analysis of Energy-Power Parameters Simulation of the Direct Extrusion Process]. Prykladni naukovo-tekhnichni doslidzhennia: IV mizhnarodna naukovo-praktychna konferentsiia – IV International Scientific and Practical Conference. (1, pp. 72-74). Ivano-Frankivsk: Vasyl Stefanyk Precarpathian National University [in Ukrainian].

GOST Style Citations

  1. Норицин И.А., Акаро И.Л., Перфилов А.А. Влияние профиля матричной воронки на параметры процесса прямого прессования. Кузнечно-штамповочное производство. 1971. № 12. С. 1–8.
  2. Сафаров Ю.С., Геращенко В.И. К вопросу о выборе оптимальной геометрии инструмента при прессовании. Кузнечно штамповочное производство. 1971. № 12. С. 8–11.
  3. Шепельский Н.В., Свяцкий В.В. Оптимизация профиля матричной воронки для прессования. Кузнечно штамповочное производство. Обработка материалов давлением. 2000. № 8. С. 10–12.
  4. Глебов Ю.П., Перлин И.М. О форме упругой зоны матрицы при прессовании через одноканальную матрицу. Известия вузов. Цветная металлургия. 1961. № 2. С. 27–30.
  5. Норицын И.А. Анализ скоростных параметров прямого прессования и волочения. Процессы штамповки и их технологические параметры. М. : Машгиз, 1959. С. 117–127.
  6. Хилл Р. Математическая теория пластичности. М. : ГИТТЛ, 1956. 407 с.
  7. Батурин А.И. Влияние технологических параметров на размеры и форму очага деформации при прямом способе прессования алюминиевых сплавов через плоскую матрицу. Кузнечно штамповочное производство. 1970. № 1. С. 6–8.
  8. Джонсон В., Кудо Х. Механика процесса выдавливания металла. М. Металлургия, 1965. 174 с.
  9. Теоретические основы ковки и обемной штамповки / Макушок Е.М., Матусевич А.С., Северденко В.П., Сегал В.М. Минск : Наука и техника, 1968. 408 с.
  10. Шепельский Н.В. Свяцкий В.В. Выбор рациональной геометрии матричной воронки для прессования. Физика и техника высоких давлений. 2000. Т. 10. № 4. С. 57–61.
  11. Шепельский Н.В., Свяцкий В.В. Влияние геометрии очага деформации на процесс получения разобщенных волокон при прессовании литых гранул. Збірн. наук. праць ДДМА. Удосконалення процесів та обладнання обробки тиском в металургії та машинобудуванні. 2000. С. 242–247.
  12. Свяцький В.В. Моделювання процесу прямого пресування з використанням криволінійних профілів матричних лійок. Литво. Металургія. 2020 : зб. матеріалів XVI міжнар. наук.-техн. конф. Тези доповідей, Запоріжжя : ФОП Мокшанов В.В., 2020. С. 294-296.
  13. Свяцький В.В. Вплив вогнища деформації на енергосилові параметри процесу пресування. Organization of scientific research in modern conditions ‘2020. Conference Proceedings, USA. Seattle : KindleDP, 2020. P. 78-82.
  14. Свяцький В.В. Аналіз моделювання енергосилових параметрів процесу прямого пресування. Прикладні науково-технічні дослідження : зб. матеріалів IV міжнар. наук.-прак. конф. Тези доповідей, Івано-Франківськ : ДВНЗ «Прикарпатський національний університет імені Василя Стефаника», 2020. Т. 1. C. 72-74.
Copyright (c) 2020 Volodymyr Sviatskyi, Oleksandr Skrypnyk, Serhii Kononchuk