DOI: https://doi.org/10.32515/2664-262X.2020.3(34).274-281

Improving the Quality of Running-in of Car Engine Parts During Running-in Using a Complex Action Additive

Yevhen Solovykh, Viktor Dubovyk, Viktor Pukalov, Yurii Nevdakha, Andrii Sereda

About the Authors

Yevhen Solovykh, Professor, Doctor in Technics (Doctor of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Viktor Dubovyk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Viktor Pukalov, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Yurii Nevdakha, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Andrii Sereda, Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Abstract

The purpose of the work is to improve the quality of the process of running-in of car engine parts during running-in using the additive of complex action. The tasks are the theoretical substantiation of the formation of transfer films during engine running-in and the conduct of comparative studies of the developed complex additive to M-8-B motor oil. The paper substantiates that in order to improve the quality and accelerate the running-in of car engine parts during running-in, a complex additive is required, which includes both surfactants and chemically active substances. The preconditions for obtaining transfer films on the friction surfaces of engine connections during running-in are considered. A frictional interaction is described in the case when the soft transfer film is strong and fixed on the main material, and the sliding surface coincides with the boundary between the film and the counter body. The presence in the zone of contact of surfactants with metals leads to the implementation of a special mechanism of frictional interaction, characterized by a colloidal system of particles in the lubricant and structural transformation on the interface. Comparative laboratory studies of the proposed additive were performed. The dependence of the moment of friction force on the time of the tests, the surface roughness of the samples worked in different compositions, as well as the distribution of the microhardness of the samples by depth were investigated. Based on the analysis of additives for running-in of engine parts, the use of complex additives containing surfactants and chemically active substances is determined as promising. Based on these studies, an additive containing ferrite spinel has been proposed. This allows you to control the running-in process through the structurally sensitive properties of the spinel composition. The use of the proposed additive of complex action helps to change the structure of the surface layer of the metal during friction under the action of temperature and load, which leads to improved quality of running-in of car engine parts during running-in.

Keywords

running-in, running-in, oil, additive, selective transfer, friction, wear

Full Text:

PDF

References

1. Radin, Yu.A. & Suslov, P.G. (1989). Bezyiznosnost detaley mashin pri trenii [Non-wear of machine parts during friction]. Leningrad: Mashinostroenie [in Russian].

2. Varnakov, V.V., Streltsov, V.V., Popov, V.M. & Karpenkov, V.F. (2000). Tehnicheskiy servis mashin selskohozyaystvennogo naznacheniya [Technical service of agricultural machinery]. Moskow: Kolos [in Russian].

3. Kragelskiy, I.V. & Mihin, N.M. (1984). Uzlyi treniya mashin [Friction units of machines]. Moskow: Mashinostroenie [in Russian].

4. Belyiy, A.V., Prokopenko, G.D. & Myishkin, N.K. (1991). Struktura i metodyi formirovaniya iznosostoykih poverhnostnyih sloev [Structure and methods of formation of wear-resistant surface layers]. Moskow: Mashinostroenie [in Russian].

5. Hebdyi, M. Chichinadze, A.V. (1990). Tribotechnics Handbook. Theoretical Foundations (Vols. 1-3; Vol. 1). Moskow: Mashinostroenie [in Russian].

6. Rebinder, P.Ya (1989). Poverhnostnyie yavleniya v dispersnyih sistemah. Fiziko-himicheskaya mehanika: Izb. Trudyi [Surface phenomena in dispersed systems. Physico-chemical mechanics]. Moskow: Nauka [in Russian].

7. Rigney, D.A., Chen, L.H., Naylor, M.G. & Spesivsev, A.A. (1986). In Proc. Of the 1986. Int. Powder Metallyrgy Conf. and Exhibition «The Futre of Powder Metallyrgy». Dusseldorf [in English].

8. Pat. N125160 Ukraine. Sklad dlia obrobky par tertia [Composition for processing friction pairs]. Has been published April 25, 2018, Bul. N8 [in Ukrainian].

GOST Style Citations

  1. Радин Ю.А., Суслов П.Г. Безызносность деталей машин при трении. Ленинград: Машиностроение, 1989. 229 с.
  2. Варнаков В.В., Стрельцов В.В., Попов В.М., Карпенков В.Ф. Технический сервис машин сельскохозяйственного назначения. Москва: Колос, 2000. 56 с.
  3. Крагельский И.В., Михин Н.М. Узлы трения машин: справочник. Москва: Машиностроение, 1984. 280 с.
  4. Белый А.В., Прокопенко Г.Д., Мышкин Н.К. Структура и методы формирования износостойких поверхностных слоев. Москва: Машиностроение, 1991. 208 с.
  5. Справочник по триботехнике: в 3 т. Теоретические основы / под общ. Ред.. М. Хебды, А.В. Чичинадзе. Москва: Машиностроение, 1990. Т. 1. 480 с.
  6. Ребиндер П.Я. Поверхностные явления в дисперсных системах. Физико-химическая механика: Изб. Труды. – Москва: Наука, 1989. 381 с.
  7. Rigney D.A., Chen L.H., Naylor M.G., Spesivsev A.A. In Proc. Of the 1986. Int. Powder Metallyrgy Conf. and Exhibition «The Future of Powder Metallyrgy». Dusseldorf, 1986. p. 835 – 838.
  8. Склад для обробки пар тертя: пат. на корисну модель №125160 Україна, опубл. 25.04.2018 р., бюл. №8.
Copyright (c) 2020 Yevhen Solovykh, Viktor Dubovyk, Viktor Pukalov, Yurii Nevdakha, Andrii Sereda