DOI: https://doi.org/10.32515/2664-262X.2020.3(34).209-217

Architectural and Constructive Decisions of a Triangular Reinforced Concrete Arch With a Self-stressed Steel Brace

Oleksandr Semko, Аnton Hasenkо, Aleksey Fenkо, J Godwin Emmanuel B., Victor Dariienko

About the Authors

Oleksandr Semko, Professor, Doctor in Technics (Doctor of Technics Sciences), Educational and Scientific Institute of Architecture and Construction, National University "Yuri Kondratyuk Poltava Polytechnic", Poltava, Ukraine

Аnton Hasenkо, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Educational and Scientific Institute of Architecture and Construction, National University "Yuri Kondratyuk Poltava Polytechnic", Poltava, Ukraine

Aleksey Fenkо, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Educational and Scientific Institute of Architecture and Construction, National University "Yuri Kondratyuk Poltava Polytechnic", Poltava, Ukraine

J Godwin Emmanuel B., Pursuing PhD, Associate Professor, Researcher, C.A.R.E. School of Architecture, No.27, Thayanoor village, Trichy, Tamil Nadu, India,

Victor Dariienko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine

Abstract

The article describes the influence of overall dimensions, namely the ratio of lifting height to the span of the triangular reinforced concrete arch of the coating, to the change in internal forces in its cross sections. The change of axial force in steel rods and reinforced concrete half-panels and the change of bending moment in reinforced concrete half-panels depending on the angle of inclination of roof are determined. According to the obtained values of the effort, the required diameters of the working reinforcement and its cost are determined.

Keywords

Triangular reinforced concrete arch of a covering, self-stressed brace, architectural and constructive decisions

Full Text:

PDF

References

1. Semko, O.V., Hasenko, A.V., Kyrychenko, V.A. & Sirobaba, V.O. (2020). The rational parameters of the civil building steel frame with struts. Proceedings of the 2nd International Conference on Building Innovations. – Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 73). First Online: 14 June 2020. (pp. 235 – 243) [in English].

2. Rubanets, О. (2019). Transformation concept "Information technologies" in modern scientific discourse. Transfer of Innovative Technologies, Vol.2, No.1, 60-68 [in English].

3. Pavlikov, A.M., Mykytenko, S.M. & Hasenko, A.V. (2018) Effective structural system for the construction of affordable housing. International Journal of Engineering & Technology: Publisher of International Academic Journals. Science Publishing Corporation, RAK Free Trade Zone, Vol 7, No 3.2). 291-298. DOI: 10.14419/ijet.v7i3.2.14422 [in English].

4. Skoruk, O. (2016). Mitsnistʹ ta trishchynostiykistʹ stalefibrobetonnykh plyt, opertykh po konturu pry povtornykh navantazhennyakh [Strength and crack resistance of reinforced concrete slabs supported on the contour under repeated loads]. Pidvodni tekhnolohiyi: promyslova ta tsyvilʹna inzheneriya – Underwater technologies: industrial and civil engineering, Vol. 03. 83–94 [in Ukranian].

5. Pavlikov, А.М. & Yurko, P.A. (2011). Rozvʹyazannya zadach mitsnosti pozatsentrovo stysnutykh zalizobetonnykh elementiv u normalʹnomu pererizi na osnovi neliniynoyi diahramy stanu betonu [Solving strength problems of eccentric compressed reinforced concrete elements in standard section basis on nonlinear concrete state diagram]. Zbirnyk naukovykh pratsʹ (haluzeve mashynobud., bud-vo) / Poltav. nats. tekhn. un-t im. Yuriya Kondratyuka – Collection of scientific works (branch machine-building., Building) / Poltava. nats tech. Yuri Kondratyuk Un-t, Vol.1 (29). 61-65 [in Ukranian].

6. Pershakov, V.M. (2007). Karkasni budinki z trisharnirnih zalizobetonnih ram [Skeleton structures with three-hinged concrete frames]: [monograph]. K.: Knyzhkove vydavnytstvo NAU [in Ukranian].

7. Azizov T., Kochkarev D. & Galinska T. (2020). Reinforced concrete rod elements stiffness considering concrete nonlinear properties. Lecture Notes in Civil Engineering, 47: 1-6. https://doi.org/10.1007/978-3-030-27011-7_1 [in English].

8. Hasenko, A.V., Yurko, I.A., Fenko, O.G. & Yurko, P.A. (2017). Causes of the eccentric compression reinforced concrete elements fixed joint stanchion and rafter gable frame of agricultural buildings. The International Scientific Periodical Journal "Modern Technology and Innovative Technologies", Issue №2, Vol.2. 126-129. DOI: 10.21893/2567-5273.2017-02-02-033 [in English].

9. Krutybich, O.V., Semko, O.V. & Hasenko, A.V. (2020). Innovatsiyni tekhnolohiyi u modelyuvanni rozrakhunkovykh skhem samonapruzhenoyi stalezalizobetonnoyi arky [Innovative technologies in modeling of calculation schemes of self-stressed reinforced concrete arch]. Zbirnyk materialiv VI mizhnarodnoyi naukovo-praktychnoyi konferentsiyi «Transfer of Innovative Technologies 2020» – VI International Scientific and Practical Conference "Transfer of Innovative Technologies 2020". 38-39. DOI: 10.32347/tit2020.conf.06 [in Ukranian].

10. Seriya 7011. Zhelezobetonnyye sbornyye bystromontiruyemyye zdaniya s proletami 18 m [Reinforced concrete prefabricated buildings with 18 m spans] [in Russian].

11. Cherednikov V., Voskobiinyk O. & Cherednikova O. (2017). Evaluation of the warping model for analysis of polystyrene concrete slabs with profiled steel sheeting. Periodica Polytechnica Civil Engineering 61(3). 483-490 [in English].

12. Storozhenko L., Yermolenko D. & Gasii G. (2018). Investigation of the Deformation State of a Composite Cable Space Frame Structures with a Photogrammetric Method. International Journal of Engineering & Technology, 7(3.2). 442-446. http://dx.doi.org/10.14419/ijet.v7i3.2.14568 [in English].

GOST Style Citations

Copyright (c) 2020 Oleksandr Semko, Аnton Hasenkо, Aleksey Fenkо, J Godwin Emmanuel B., Victor Dariienko