DOI: https://doi.org/10.32515/2664-262X.2020.3(34).182-193

Sector Rasterization Method for Images on a Video Device With Mechanical Scanning

Yelizaveta Meleshko, Dmytro Bakin

About the Authors

Yelizaveta Meleshkok,Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Dmytro Bakin, master student, Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Abstract

The goal of this work was to create a method for sectoral rasterization for images on video devices with mechanical scanning that can be used for advertising purposes. Preparing an image for display on a machine with a mechanical sector scan requires the creation of software for transferring a classic rectangular raster to a sector raster. When implementing software for an embedded computing system of mechanical image scanning for advertising purposes, the task was to reproduce a raster image using concentrically located circles, which are divided into sectors. The ambiguity of the transition from a square to a sectorial raster lies in the variable area of the sectors as they move away from the center of the image. According to this fact, there are several sectors for each of the pixels near the central zone of the image, and several pixels for one sector to the periphery of the image. There is not possible to increase the resolution of a sector image due to hardware limitations, so a new method of sector rasterization for an image on a mechanically scanned video device was developed. The developed method combines algorithms that make it possible to transform a raster image into a sectorial raster using linear interpolation depending on the distance of the sector from the center of the image. Attention was also paid to assessing the time of the next complete revolution when starting the mechanical scanning system, which made it possible to reduce the time for obtaining a stable image from the moment the device was turned on. So, as the result of the research, the method of sectorial image rasterization was developed, as well as the algorithms that allow converting a raster image into a sectorial image were developed. Вased on the developed algorithms, the software product for an embedded image reproduction system and the software product for real-time video transmission over Wi-Fi communication with the conversion of a rectangular raster into a sector raster were created. By combining algorithms for converting a square raster to a sector one, the quality of image reproduction on a mechanically scanned video device was improved.

Keywords

image rasterization, sectoral scanning, mechanical scanning, video device, microcontroller programming

Full Text:

PDF

References

1. Lejtes, L.S. (2017). Essays on the history of fatherland television. Moscow: Ostankino. 224 p. [in Russian].

2. Drieieva, H.M., Drieiev, O.M., Khokh, V.D. & Denysenko, O.O. (2018). Elements of vector computer graphics: methodical instructions for laboratory work for full-time and part-time students majoring in 123 "Computer Engineering", 125 "Cybersecurity". Kropyvnytskyi: CNTU. 66 p. Retrieve from http://dspace.kntu.kr.ua/jspui/bitstream/123456789/8851/1/Elem_vekt_komp_hraf.pdf [in Ukrainian].

3. Tupikin, D.A., Kiseleva, S.V. & Agibalov, I. (2014). Optoelectronic visualization device with mechanical scanning. Information systems and technologies, №4(84), P. 135-139. Retrieve from http://library.oreluniver.ru/polnotekst/IzvestiyaOrelGTU/ISiT_2014_4.pdf#page=135 [in Russian].

4. Samarin. A. (2008). Laser microprojector with spiral scanning. Components and Technologies, №87, P. 101-104. Retrieve from https://cyberleninka.ru/article/n/lazernyy-mikroproektor-so-spiralnoy-razvertkoy [in Russian].

5. Vaskovskyi, Yu.M., Haidenko, Yu.A. & Kovalenko, M.A. (2017). Mathematical modeling of electric machines with permanent magnets. Electronic text data (1 file: 18.63 MB). Kyiv: Igor Sikorsky Kyiv Polytechnic Institute. 200 p. Retrieve from https://ela.kpi.ua/handle/123456789/32791 [in Ukrainian].

6. Drieiev, O.M. & Sliusar, O.V. (2008). Investigation of the influence of the scanning path on the degree of entropy compression of a digital image. Machinery in agricultural production, industry machine building, automation, Volume 21, P. 115-118. Retrieve from http://dspace.kntu.kr.ua/jspui/bitstream/123456789/1395/1/21.pdf [in Ukrainian].

7. Fan blade sign display device. Patent US20030049124A1. Retrieve from https://patents.google.com/patent/US20030049124A1/en [in English].

8. Rendering an image pixel in a composite display. Patent US8319703B2. Retrieve from https://patents.google.com/patent/US8319703B2/en [in English].

9. Prado Ortega M.X., Delgado Ramírez J.C., Valarezo Castro J.W., Armijos Carrión J.L., Ávila Carvajal A.A., González Segarra A.N. (2020). Application of the technical – pedagogical resource 3D holographic LED-fan display in the classroom. Smart Learning Environments, Volume 7, Number 32, 13 p. Retrieve from https://link.springer.com/article/10.1186/s40561-020-00136-5 [in English].

GOST Style Citations

  1. Лейтес Л.С. Очерки истории отечественного телевидения. Москва: ФГУП «ТТЦ «Останкино», 2017. 224 c.
  2. Елементи векторної комп’ютерної графіки: метод. вказівки до виконання лаб. робіт для студ. денної та заочної форми навч. за спец. 123 “Комп’ютерна інженерія”, 125 “Кібербезпека” / уклад. Дрєєва Г.М., Дрєєв О.М., Хох В.Д., Денисенко О.О. Кропивницький: ЦНТУ. 2018. 66 с. URL: http://dspace.kntu.kr.ua/jspui/bitstream/123456789/8851/1/Elem_vekt_komp_hraf.pdf
  3. Тупикин Д.А. , Киселева С.В. , Агибалов И. Оптоэлектронное устройство визуализации с механической разверткой // Информационные системы и технологии. 2014. №4(84). С. 135-139. URL: http://library.oreluniver.ru/polnotekst/IzvestiyaOrelGTU/ISiT_2014_4.pdf#page=135
  4. Самарин А. Лазерный микропроектор со спиральной развёрткой. Компоненты и Технологии. 2008. №87. С. 101-104. URL: https://cyberleninka.ru/article/n/lazernyy-mikroproektor-so-spiralnoy-razvertkoy
  5. Васьковський Ю.М., Гайденко Ю.А., Коваленко М.А. Математичне моделювання електричних машин з постійними магнітами // Електронні текстові дані (1 файл: 18,63 Мбайт). Київ: КПІ ім. Ігоря Сікорського, 2017. 200 с. URL: https://ela.kpi.ua/handle/123456789/32791
  6. Дрєєв О.М., Слюсар О.В. Дослідження впливу шляху розгортки на ступінь ентропійного стиснення цифрового зображення. Техніка в сільськогосподарському виробництві, галузеве машинобудування, автоматизація: зб. наук. пр. Кіровогр. нац. техн. ун-ту. 2008. Вип. 21. C. 115-118. URL: http://dspace.kntu.kr.ua/jspui/bitstream/123456789/1395/1/21.pdf
  7. Fan blade sign display device. Patent US20030049124A1. URL: https://patents.google.com/patent/US20030049124A1/en
  8. Rendering an image pixel in a composite display. Patent US8319703B2. URL: https://patents.google.com/patent/US8319703B2/en
  9. Mauricio Xavier Prado Ortega, Jorge Cristopher Delgado Ramírez, Jorge Washington Valarezo Castro, Jorge Luis Armijos Carrión, Asisclo Alfonso Ávila Carvajal & Anyeline Natalia González Segarra “Application of the technical - pedagogical resource 3D holographic LED-fan display in the classroom” Smart Learning Environments volume 7, Article number: 32 (2020). URL: https://link.springer.com/article/10.1186/s40561-020-00136-5
Copyright (c) 2020 Yelizaveta Meleshko, Dmytro Bakin