DOI: https://doi.org/10.32515/2664-262X.2020.3(34).65-72

Impact Resistant Cast iron for Grinding Bodies

Viktor Lomakin, Lyudmyla Molokost

About the Authors

Viktor Lomakin, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Lyudmyla Molokost,lecturer, Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Abstract

A study of the dynamic strength (impact resistance) of grinding bodies cast from low-chromium cast iron in a multi-seat chill mold depending on the chromium content in the alloy is carried out. As a starting point, cast iron of the following composition was used: carbon – 3,0%, silicon – 1,6%, manganese – 0,4%, sulfur – 0,05%, phosphorus – 0,06%. For the study, several batches of balls with a diameter of 60 mm were cast with different chromium content in cast iron, from 0 to 1%. Cast iron was smelted in a medium-frequency induction furnace, such as IChT, with the main lining on a charge of pure pig iron and steel low-carbon scrap. The temperature of cast iron production was 1500 °C. Liquid cast iron was subjected to alloying with medium carbon ferrochrome. Balls were cast in multi-seat chill molds. When tested for impact resistance, the grinding ball received a striking blow of mass 50 kg, falling from a height of 0,5 m. The frequency of application of dynamic loads was 10 beats per minute. Impact resistance was determined by the average number of impacts sustained by the grinding body prior to destruction. An increase in the impact resistance of ball castings has been established with an increase in the mass fraction of chromium in cast iron up to 1%. Moreover, the greatest increase in dynamic strength is observed with an increase in the mass fraction of chromium from 0,3% to 0,5%. With a further increase in the chromium content, the impact resistance of white low-alloy cast iron increases less noticeably, and in the presence of chromium 0,7-0,8% reaches a maximum. The difference in hardness from the surface (~ 52 HRC) to the center of the ball (~ 42 HRC) is a value of about 10 units. The established impact resistance of grinding bodies made it possible to conclude: when grinding solid rocks with high content of solid quartz, the use of low chromium cast iron as a material for grinding media is the most effective, as in terms of achieve high impact resistance, and to ensure cost-effective performance.

Keywords

cast iron, melt, ball, chill mold, alloying, chrome, impact resistance

Full Text:

PDF

References

1. Samoilov, V.N., Konovalov, Yu.N., Tistechok, V.D. (1999). Sostoyanie i perspektivy razvitiya litja chugunnyh melyushchih tel v usloviyah КG GМК “Krivorogstal'” [The state and development prospects of cast iron grinding bodies casting under the conditions of the Krivorozhstal mining and metallurgical complex]. Metall i litje Ukraiiny, Vol. 9, 10, 13-16 [in Russian].

2. Shcherbakova, V.M., Udovikov, V.I., Butko, N.I., Sobolev, A.N., Kikovka, E.I. (1981). Iznosostojkij chugun dlya otlivok melyushchih cilindrov [Wear resistant cast iron for olives grinding cylinders]. Litejnoe proizvodstvo, Vol. 4, 24 [in Russian].

3. Poddubnyj, A.N., Sakalo, V.I., Zharkov, V.Ya., Kulybovskij, I.K., Ignatenko, Yu.V., Mikhailov, N.N. (1994) Vliyanie stroeniya lityh sharov iz byelogo chuguna na yego prochnost' [The influence of the structure of cast balls of white cast iron on its strength]. Litejnoe proizvodstvo, Vol. 8, 10-12 [in Russian].

4. Luchkin, V.S., Pirogova, E.K., Lesko, A.G. (1988). Vliyanie uglyeroda i marganca na iznosostojkost' hromistyh chugunov [The effect of carbon and manganese on the wear resistance of chromium cast irons]. Litejnoe proizvodstvo, Vol. 4, 23 [in Russian].

5. Kirievskij, B.A., Izyumova, T.К. (1993). Hromistye chuguny. Perspektivy sovershenstvovaniya ih struktury i svojstv [Chrome cast iron. Prospects for improving their structure and properties]. Processy litja, Vol. 4, 115-124 [in Russian].

6. Vladimirova, A.A., Kosogonova, E.A., Udovikov, V.I., Karpenko, V.F. (1988). Litye melyushchie shary iz chuguna [Cast iron grinding balls]. Litejnoe proizvodstvo, Vol. 11, 27-28 [in Russian].

7. Lomakin, V.M., Klymenko, V.V., Pukalov, V.V., Kuzyk, О.V., Dubodelov, V.I., Goryuk, M.S. (2018). Doslidgennya procesu zatverdinnya ta prognozuvannya struktury lytyh chavunnyh molol'nyh til [Investigation of the process of solidification and prediction of the structure of cast iron grinding bodies]. Zbirnyk naukovykh prac' Central'noukraiins'koho natsional'noho tekhnichnoho universytetu. 2018. Vol. 31. С.66-74 [in Ukraine].

8. Poddubnyj, A.N., Alexandrov, N.N, Kul'bovskij, I.К, Zharkov, V.Ya. (1994). Izgotovlenie lityh chugunnyh melyushchih sharov [Cast iron grinding balls]. Litejnoe proizvodstvo, Vol. 8, 8-10 [in Russian].

9. Poddubnyj, A.N. (1998). Melyushchie shary iz chuguna, izgotovlennye kokil'nym litjem [Making cast iron grinding balls, made by chill casting]. Litejnoe proizvodstvo, Vol. 1, 8-11 [in Russian].

10. Bestuzhev, N.I., Korolev, S.P. (1999). Grafitizirovannyj belyj chugun – perspektivnyj material dlya melyushchih tel [Graphitized white cast iron - a promising material for grinding bodies]. Litejnoe proizvodstvo, Vol. 3, 20-21 [in Russian].

GOST Style Citations

  1. Самойлов В. Н., Коновалов Ю. Н., Тистечок В. Д. Состояние и перспективы развития литья чугунных мелющих тел в условиях КГ ГМК “Криворожсталь”. Металл и литье Украины. 1999. Вып. 9, 10. С. 13-16.
  2. Щербакова В. М., Удовиков В. И., Бутко Н. И., Соболев А. Н., Киковка Е. И. Износостойкий чугун для оливок мелющих цилиндров. Литейное производство. 1981. Вып. 4. С. 24.
  3. Поддубный А. Н., Сакало В. И., Жарков В. Я., Кульбовский И. К., Игнатенко Ю. В., Михайлов Н. Н. Влияние строения литых шаров из белого чугуна на его прочность. Литейное производство. 1994. Вып. 8. С. 10-12.
  4. Лучкин В. С., Пирогова Э. К., Леско А. Г. Влияние углерода и марганца на износостойкость хромистых чугунов. Литейное производство. 1988. Вып. 4. С. 23.
  5. Кириевский Б. А., Изюмова Т. К. Хромистые чугуны. Перспективы совершенствования их структуры и свойств. Процессы литья. 1993. Вып. 4. С. 115-124.
  6. Владимирова А. А., Косогонова Э. А., Удовиков В. И., Карпенко В. Ф. Литые мелющие шары из чугуна. Литейное производство. 1988. Вып. 11. С. 27-28.
  7. Ломакін В. М., Клименко В. В., Пукалов В. В., Кузик О. В., Дубодєлов В. І., Горюк М. С. Дослідження процесу затвердіння та прогнозування структури литих чавунних молольних тіл Збірник наукових праць Центральноукрїнського національного технічного університету. 2018. Вип. 31. С.66-74.
  8. Поддубный А. Н., Александров Н. Н., Кульбовский И. К., Жарков В. Я. Изготовление литых чугунных мелющих шаров. Литейное производство. 1994. Вып. 8. С.8-10.
  9. Поддубный А. Н. Мелющие шары из чугуна, изготовленные кокильным литьем. Литейное производство. 1998. Вып. 1. С.8-11.
  10. Бестужев Н. И., Королев С. П. Графитизированный белый чугун – перспективный материал для мелющих тел. Литейное производство. 1999. Вып. 3. С. 20-21.
Copyright (c) 2020 Viktor Lomakin, Lyudmyla Molokost