DOI: https://doi.org/10.32515/2664-262X.2020.3(34).136-142

Heat Pump Cycle Efficiency for Heat Supply

Mykola Bosiy, Olexandr Kuzyk

About the Authors

Mykola Bosyi, Senior Lecturer, Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Olexandr Kuzyk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Abstract

The aim of the article is to analyze the literature and scientific publications on the effectiveness of the heat pump in heat supply systems and to study the efficiency of using the steam compression cycle of a heat pump in a heat supply system. Тo conduct energy and exergy analysis of heat pump efficiency indicators, the working fluid of which is freon R134a, when using natural waters as a source of low-potential thermal energy. The article analyzes the literature sources and scientific publications on the effectiveness of the heat pump in heat supply systems. The results of research of efficiency of application of the heat pump in systems of heat supply at use of natural waters as a source of low-potential thermal energy are presented. Energy and exergy analysis of heat pump efficiency indicators, the working fluid of which is R134a freon, was performed. The energy efficiency of the heat pump cycle was determined by the conversion factor of the heat pump. The thermodynamic efficiency of the heat pump in heat supply systems was evaluated using exergetic efficiency, which is one of the main indicators of the efficiency of heat pump processes and cycles. The calculation of energy indicators of the heat pump, such as: specific heat load in the evaporator and condenser, as well as the conversion factor of the heat pump. The calculation of exergetic efficiency for ambient temperature from +10 to -10 ºC. Thus, the energy and exergy analysis of the efficiency of the heat pump, the working fluid of which is Freon R134a with a conversion factor = 4.8. This indicates that the heat pump is a reliable, highly efficient, environmentally friendly source of energy for use in heating systems. A heat pump heating system will always consume less primary energy than traditional heating systems if natural water is used as a low-temperature heat source for the heat pump. The efficiency of the steam compression cycle of the heat pump largely depends on the temperature of low-potential heat sources. The use of HV in heating systems reduces greenhouse gas emissions compared to conventional types of heat supply, which is relevant to the ecological state of the environment.

Keywords

heat pump, heat pump transformation coefficient, heat supply system, low potential energy source

Full Text:

PDF

References

1. Ray D., McMile D. (1982). Teplovye nasosy [Heat pumps]. Moscow: Energoizdat [in Russian].

2. Draganov, B.H., Dolinsky, A.A., Mishchenko, A.V. & Written, E.M. (2005). Теплотехніка [Heat engineering]. Draganova B.H. (Ed.). Kyiv: INCOS [in Ukrainian].

3. Trubaev, P.A. &Grishko, B.M. (2010). Teplovye nasosy [Heat pumps]. Belgorod: BSTU Publishing House [in Russian].

4. Heinrich, G., Nayork, H. & Nestler, W. (1985). Teplonasosnye ustanovki dlja otoplenija i gorjachego vodosnabzhenija [Heat pump installations for heating and hot water supply]. (Trans.) Moscow: Stroyizdat [in Russian].

5. Tkachenko, S.Y. & Ostapenko, O.P. (2009). Parokompresijni teplonasosni ustanovky v systemakh teplopostachannia [Steam compression heat pump installations in heat supply systems]. Vinnytsia: VNTU [in Ukrainian].

6. Ostapenko, O.P. (2015). Kholodyl'na tekhnika ta tekhnolohiia. Teplovi nasosy [Refrigeration equipment and technology. Heat pumps]. Vinnytsia: VNTU, 2015. [in Ukrainian].

7. Arsenyev, V.M. (2009). Teplonasosnaja tehnologija energozberezhennja [Heat pump technology of energy saving]. Sumy: SDU Publishing House [in Russian].

8. Sokolov, E.Y., Brodyansky, V.M. (1981). Jenergeticheskie osnovy transformacii tepla i processov ohlazhdenija [Energy bases of heat transformation and cooling processes]. Moscow: Energoizdat [in Russian].

9. Brodyansky, V.M. (1973). Jeksergeticheskij metod termodinamicheskogo analiza [Exergetic method of thermodynamic analysis]. Moscow: Energy [in Russian].

10. Martynovsky, V.S. (1979). Cikly, shemy i harakteristiki termotransformatorov [Cycles, schemes and characteristics of thermal transformers]. Brodyansky, V.M. (Ed.) Moscow: Energy [in Russian].

11. Arsenyev, V.M. & Grechanenko, V.A. (2002). Jeksergeticheskaja ocenka jeffektivnosti teplonasosnoj tehnologii jenergosberezhenij [Exergetic evaluation of the efficiency of heat pump technology of energy savings]. Vіsnik Sums'kogo derzhavnogo unіversitetu – Bulletin of Sumy State University, №9 (42), 81-85 [in Russian].

12. Dolinsky, A.A. & Brodyansky, V.M. (Eds.). (1991). Jeksergeticheskie raschety tehnicheskih sistem [Exergetic calculations of technical systems]. Kiev: Naukova Dumka [in Russian].

13. Denisova, A.E., Bodnar, I.A. & Denisova, A.S., (2015). Teplonasosnye sistemy s ispol'zovaniem gruntovyh vod dlja sistem teplosnabzhenija [Heat pump systems using groundwater for heat supply systems]. PROBLEMELE ENERGETICII REGIONALE – PROBLEMELE ENERGETICII REGIONALE, 2 (28), 67-75 [in Russian].

14. Denisova, A.E. & Biryuk, V.Y. (2012). Analiz parokompresijnoho tsyklu teplonasosnykh stantsij teplopostachannia [Analysis of the steam compression cycle of heat pump heat supply stations]. Pratsi ONPU – Proceedings of the ONPU, 1 (38), 125-128 [in Ukrainian].

15. Arsenyev, V.M. & Meleichuk, S.S. (2018). Teplovi nasosy:osnovy teorii i rozrakhunku [Heat pumps: the basics of the theory and design]. Sumi, SDU [in Ukrainian].

GOST Style Citations

  1. Рей Д., Макмайл Д. Тепловые насосы. Москва: Энергоиздат. 1982. 224 с.
  2. Драганов Б.Х., Долінський А.А., Міщенко А.В., Письменний Є.М. Теплотехніка: підручник.; за ред. Драганова Б.Х. Київ: «ІНКОС», 2005. 504 с.
  3. Трубаев П.А. Гришко Б.М. Тепловые насосы: учеб. пособие. Белгород: Изд-во БГТУ, 2010. 134 с.
  4. Хайнрих Г., Найорк Х., Нестлер В. Теплонасосные установки для отопления и горячего водоснабжения: пер. с нем. Москва: Стройиздат, 1985. 351 с.
  5. Ткаченко С.Й., Остапенко О.П. Парокомпресійні теплонасосні установки в системах теплопостачання: монографія. Вінниця: ВНТУ, 2009. 176 с.
  6. Остапенко О.П. Холодильна техніка та технологія. Теплові насоси: навчальний посібник. Вінниця: ВНТУ, 2015. 123 с.
  7. Арсеньев В.М. Теплонасосная технология енергозбереження. Суми: Вид-во СДУ, 2009. 251 с.
  8. Соколов Е.Я., Бродянский В.М. Энергетические основы трансформации тепла и процессов охлаждения. Москва: Энергоиздат, 1981. 320 с.
  9. Бродянский В.М. Эксергетический метод термодинамического анализа. Москва: Энергия, 1973. 296 с.
  10. Мартыновский В.С. Циклы, схемы и характеристики термотрансформаторов; под ред. Бродянского В.М. Москва: Энергия, 1979. 288 с.
  11. Арсеньев В.М., Гречаненко В.А. Эксергетическая оценка эффективности теплонасосной технологии энергосбережений. Вісник Сумського державного університету. 2002. №9(42). С.81-85.
  12. Эксергетические расчеты технических систем: справочное пособие / под ред. Долинского А.А. и Бродянского В.М. Киев: Наукова думка, 1991. 360 с.
  13. Денисова А.Е., Боднар И.А., Денисова А.С, Теплонасосные системы с использованием грунтовых вод для систем теплоснабжения. PROBLEMELE ENERGETICII REGIONALE. 2015. №2(28). С.67-75.
  14. Денисова А.Е., Бірюк В.Ю. Аналіз парокомпресійного циклу теплонасосних станцій теплопостачання. Праці ОНПУ. 2012. №1(38). С.125-128.
  15. Арсеньєв В.М., Мелейчук С.С. Теплові насоси:основи теорії і розрахунку: навч. посібн. Суми.СДУ, 2018. 364 с.
Copyright (c) 2020 Mykola Bosiy, Olexandr Kuzyk