DOI: https://doi.org/10.32515/2664-262X.2020.3(34).313-324

Improving Electrical Discharge Machining Process for Bodies of Rotation

Victor Bokov, Oleh Sisa, Vasyl Yuryev

About the Authors

Victor Bokov, Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Oleh Sisa, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Vasyl Yuryev, post-graduate, Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Abstract

In modern mechanical engineering, electrical discharge machining (EDM) methods are widely used for machining bodies of rotation from difficult-to-machine materials. Those methods ensure sparing cutting and make it possible to machine any electrically conductive material irrespective of its physical and chemical properties, in particular hardness. There is a known method for dimensional machining of bodies of rotation with electric arc using a wire electrode tool that is pulled along in the machining area thus "compensating" for that tool's EDM wear and tear. The machining accuracy is therefore significantly heightened. However, when implementing this method, an effect of splashing the working fluid outside the working area of the machine and a pronounced luminous effect from the burning of the electric arc in the machining area are observed. That worsens the working conditions. In addition, when pulling the wire electrode tool along the convex surface of the electrode holder, the sliding friction arises, which eventually leads to mechanical destruction of the contact point. As a result, a deep kerf is formed on the electrode holder. When the depth of the kerf reaches the diameter of the wire electrode tool, the destruction of the electrode holder by the electric arc begins. Consequently, the durability of the electrode holder in the known method is unsatisfactory. A method of dimensional machining of bodies of rotation with electric arc using a wire electrode tool with the immersion of the machining area in the working fluid has been proposed, which makes it possible to improve the working conditions of the operator by eliminating the effect of fluid splashing and removing the luminous effect of arc burning in the machining area. In addition, it has been proposed to make the electrode holder in the form of a roller that rotates with a guide groove for the wire electrode tool, while the nozzle for creating the transverse hydrodynamic fluid flow has been proposed to be mounted in a separate fixed housing that is adjacent to the electrode holder. This technical solution replaces the sliding friction with the rolling one thus enhancing the durability of the electrode holder. Mathematical models of the process characteristics of the DMA-process (dimensional machining with electric arc) for bodies of rotation using a wire electrode tool with the immersion of the machining area in the working fluid have been obtained that make it possible to control the machining productivity, the specific machining productivity, the specific electric power consumption, and the roughness of the surface machined.

Keywords

electric arc, hydrodynamic conditions, wire electrode tool, shaping arrangement, immersion tank

Full Text:

PDF

References

1. Dumpe, V. Je. (1975). Jelektrojerozionnaja obrabotka detalej [Electrical discharge machining of parts]. Kyiv: Tehnіka [in Russian].

2. Artamonov, B.A., Vinnickij, A.L., Volkov, Ju.S. & Glazkov, A.V. (1978). Dimensional electrical processing of metals: a textbook for universities. A.V. Glazkov (Ed.). Moscow: Vyssh. shk. [in Russian].

3. Pat. 24439A Ukraine, MPK V23R 17/00. Sposib obrobky til obertannia elektrychnoiu duhoiu i elektrod-instrument dlia joho realizatsii [The method of wrapping til wrapping with an electric arc and an electro-tool for yogo implementation]. No. 97041927; stated. April 22, 1997; has been published October 30, 1998, Bul. No. 5. [in Ukrainian].

4. Bokov, V.M. (2002). Rozmirne formoutvorennia poverkhon' elektrychnoiu duhoiu: monohrafiia [The shape-setting of the surface with an electric arc: monograph]. Kirovohrad: Polihrafichno-vydavnychyj tsentr TOV «Imeks – LTD» [in Ukrainian].

5. Pat. 121498 Ukraine, MPK V23K 9/013, V23K 35/38. Sposib obrobky poverkhon' til obertannia elektrychnoiu duhoiu v hidrodynamichnomu pototsi robochoi ridyny [The method of processing surfaces by wrapping with an electric arc in a hydrodynamic potting of a working day]. No. u201705537; stated. June 06, 2017; has been published December 11, 2017, Bul. No. 23. [in Ukrainian].

6. Pat. 130822 Ukraine, MPK V23K 9/013, V23K 35/38, V23K 103/00. Prystrij dlia obrobky poverkhon' til obertannia elektrychnoiu duhoiu v hidrodynamichnomu pototsi robochoi ridyny [Pristіy for obrobony surface tіl wraparound with an electric arc in a hydrodynamic flow of work]. No. u2018 06873; stated. June 18, 2018; has been published December 26, 2018, Bul. No.24. [in Ukrainian].

GOST Style Citations

  1. Думпе В. Э. Электроэрозионная обработка деталей. К.: Техніка, 1975. 144 с.
  2. Размерная электрическая обработка металлов: учебное пособие для вузов / Б. А. Артамонов, А. Л. Винницкий, Ю. С. Волков, А. В. Глазков; под ред. А. В. Глазков. М.: Высш. шк., 1978. 336 с.
  3. Спосіб обробки тіл обертання електричною дугою і електрод-інструмент для його реалізації: пат. 24439А Україна: МПК В23Р 17/00. № 97041927; заявл. 22.04.97; опубл. 30.10.98, Бюл. № 5.
  4. Боков В. М. Розмірне формоутворення поверхонь електричною дугою: монографія. Кіровоград: Поліграфічно-видавничий центр ТОВ «Імекс – ЛТД», 2002. 300 с.
  5. Спосіб обробки поверхонь тіл обертання електричною дугою в гідродинамічному потоці робочої рідини: пат 121498 Україна: МПК В23К 9/013, В23К 35/38. № u201705537; заявл. 06.06.2017; опубл. 11.12.2017, Бюл. № 23.
  6. Пристрій для обробки поверхонь тіл обертання електричною дугою в гідродинамічному потоці робочої рідини: пат. 130822 Україна: МПК В23К 9/013, В23К 35/38, В23К 103/00. № u2018 06873; заявл. 18.06.2018; опубл. 26.12.2018, Бюл. № 24.
Copyright (c) 2020 Victor Bokov, Oleh Sisa, Vasyl Yuryev