DOI: https://doi.org/10.32515/2664-262X.2019.2(33).130-139

Methodology for Determining the Design Loads of Industrial Enterprises by the Specific Energy Consumption Using an Non-stationary Model of Electrical Load Schedules

Petro Pleshkov, Yuri Kazantsev, Oleksandr Sirikov, Natalia Garasova, Tatiana Velichko

About the Authors

Petro Pleshkov, Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Yuri Kazantsev, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Oleksandr Sirikov, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Natalia Garasova, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Tatiana Velichko, Senior Lecturer, Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Abstract

The proposed methodology for determining the calculated electric load of industrial enterprises for the specific energy consumption and determining the coefficient maximum based on probability theory using ergodic theorems for non-stationary random processes. When designing power supply systems, the main initial value is the calculated electrical load. High demands are placed on the accuracy and correctness of determining the electrical load. The most common method for calculating the electrical loads of industrial enterprises is the method of ordered diagrams. It is recommended for use at the lower levels of power supply systems at the level of individual consumer groups, sections, workshops and buildings. At higher levels of electricity distribution, the application of this calculation method may be accompanied by significant errors. Therefore, its use for higher levels is not recommended. The specific energy costs of the workshops and the plant as a whole are determined using the main energy characteristics. It can be applied to certain similar enterprises. According to the specific norms of power consumption and the design performance data, the average power is determined. Knowing the average value for the time interval and the variance of the graph of the electrical load, as well as the distribution laws, it is possible to determine the estimated 30-minute maximum load for a given confidence probability. And by its value, the coefficient maximum. By multiplying the average power by the coefficient maximum, the desired design load is determined. The proposed method for calculating the electrical loads of industrial enterprises can be used for higher stages of the power supply system at the level of sections, workshops and the enterprise as a whole. The advantage of the proposed method, in contrast to the ordered diagram method, is the absence of the need to consider and take into account the characteristics of the operating modes of individual electric consumers.

Keywords

design load, specific electricity consumption, ergodic theorems, non-stationary process

Full Text:

PDF

References

1. Malinovskyi, A.A., & Khokhulin, B.K (2009). Osnovy elektroenerhetyky ta elektropostachannia [Fundamentals of Electricity and Power Supply]. Lviv: Vydavnytstvo Natsionalnoho universytetu «Lvivska politekhnika» [in Ukrainian].

2. Burbelo, M.I., Biriukov, O.O., & Melnychuk, L.M. (2011). Systemy elektropostachannia. Elementy teorii ta pryklady rozrakhunkiv [Power supply systems. Elements of theory and examples of calculations]. Vinnytsia: VNTU [in Ukrainian].

3. Plieshkov, P.H., Serebrennikov, S.V., Petrova, K.H., Savelenko, I.V., & Sirikov, O.I. (2019). Problemy vyznachennia efektyvnosti ta ranzhuvannia enerhooshchadnykh zakhodiv na obiektakh biudzhetnoi sfery [Problems in determining the efficiency and ranking of energy-saving measures in budgetary entities]. Tsentralnoukrainskyi naukovyi visnyk. Tekhnichni nauky. – Central Ukrainian Scientific Bulletin. Engineering sciences,. 1(32), 166-172 [in Ukrainian].

4. Ukazaniya po raschetu elektricheskih nagruzok (RTM 36.18.32.4-92) [Instructions for the calculation of electrical loads (RTM 36.18.32.4-92)]. (1992) Moscow: VNIPI Tyazhpromelektroproekt. [in Russian].

5. Sveshnikov, A.A. (2011). Prikladnye metody teorii sluchajnyh funkcij [Applied methods of the theory of random functions]. Sankt-Peterburg: Lan [in Russian].

6. Avilov-Karnauhov, B.N. (1969). Elektroenergeticheskie raschety dlya ugol'nyh shaht [Electric power calculations for coal mines]. Moscow: Nedra [in Russian].

7. Kazantsev, Yu.I., Kotysh, A.I., & Sirikov, O.I. (2004). Enerhetychni kharakterystyky pidpryiemstv pry bahatonomenklaturnomu vyrobnytstvi yak nekorektni stokhastychni zviazky [Energetic characteristics of enterprises in multi-nomenclature production as incorrect stochastic connections]. Zbirnyk naukovykh prats Kirovohradskoho natsionalnoho tekhnichnoho universytetu. Tekhnika v silskohospodarskomu vyrobnytstvi, haluzeve mashynobuduvannia, avtomatyzatsiia – Collection of scientific works of Kirovohrad National Technical University. Engineering in agricultural production, industry engineering, automation, 14, 369-375 [in Ukrainian].

8. Kazancev, YU.I., & Stec', P.G. (2012). Energeticheskie harakteristiki kak osnova normirovaniya elektroenergii i ee racional'nogo ispol'zovaniya v elektroenergeticheskih sistemah [Energy characteristics as a basis for the normalization of electricity and its rational use in power systems]. Zbirnyk naukovykh prats Kirovohradskoho natsionalnoho tekhnichnoho universytetu. Tekhnika v silskohospodarskomu vyrobnytstvi, haluzeve mashynobuduvannia, avtomatyzatsiia – Collection of scientific works of Kirovohrad National Technical University. Engineering in agricultural production, industry engineering, automation, 25(ІІ), 142-144 [in Russian].

9. Kabanihin, S.I. (2018). Obratnye i nekorrektnye zadachi [Inverse and incorrect tasks]. Novosibirsk: FGUP «Izdatel'stvo SO RAN» [in Russian].

10. ZHeleznov, N.A. (1960). Nekotorye voprosy teorii informacionnyh elektricheskih sistem [Some questions about the theory of information electrical systems]. Trudy LKVIA – Proceedings of LKVIA, 191, 155-160 [in Russian].

GOST Style Citations

Пристатейна бібліографія ГОСТ

  1. Маліновський А.А., Хохулін Б.К. Основи електроенергетики та електропостачання: підручник. 2-ге вид., перероб. і доп.. Львів: Видавництво Національного університету «Львівська політехніка», 2009. 436 с.
  2. Бурбело М.Й., Бірюков О.О., Мельничук Л.М. Системи електропостачання. Елементи теорії та приклади розрахунків: навч. посіб.. Вінниця: ВНТУ, 2011. 204 с.
  3. Проблеми визначення ефективності та ранжування енергоощадних заходів на об’єктах бюджетної сфери / Плєшков П.Г. та ін. Центральноукраїнський науковий вісник. Технічні науки. 2019. Вип. 1(32). С. 166-172.
  4. Указания по расчету электрических нагрузок (РТМ 36.18.32.4-92). Москва : ВНИПИ Тяжпромэлектропроект, 1992. 27 с.
  5. Свешников А.А. Прикладные методы теории случайных функций: учебное пособие. Изд. 3-е, стер. Санкт-Петербург: Лань, 2011. 463 с.
  6. Авилов-Карнаухов Б.Н. Электроэнергетические расчеты для угольных шахт. Москва: Недра, 1969. 103 с.
  7. Казанцев Ю.І., Котиш А.І., Сіріков О.І. Енергетичні характеристики підприємств при багатономенклатурному виробництві як некоректні стохастичні зв’язки. Техніка в сільськогосподарському виробництві, галузеве машинобудування, автоматизація: зб. наук. пр. Кіровогр. нац. техн. ун-ту. 2004. Вип. 14. С. 369-375.
  8. Казанцев Ю.И., Стець П.Г. Энергетические характеристики как основа нормирования электроэнергии и ее рационального использования в электроэнергетических системах. Техніка в сільськогосподарському виробництві, галузеве машинобудування, автоматизація: зб. наук. пр. Кіровогр. нац. техн. ун-ту. 2012. Вип. 25, Ч.ІІ. С. 142-144.
  9. Кабанихин С.И. Обратные и некорректные задачи. Изд. 4-е ред. Новосибирск: ФГУП «Издательство СО РАН», 2018. 512 с.
  10. Железнов Н.А. Некоторые вопросы теории информационных электрических систем. Труды ЛКВИА. 1960. Т. 191. С. 155-160.
Copyright (c) 2019 Petro Pleshkov, Yuri Kazantsev, Oleksandr Sirikov, Natalia Garasova, Tatiana Velichko