DOI: https://doi.org/10.32515/2664-262X.2019.2(33).65-75

The Rationale for the Use of Modern Approaches to Improve the Diagnosis of Vehicle Systems and Assemblies

Viktor Aulin, Taras Zamota, Andriy Grinkiv, Sergiy Lysenko, Oleg Krupitsa, Kostiantyn Panayotov

About the Authors

.Viktor Aulin, Professor, Doctor in Technics (Doctor of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Taras Zamota, Associate Professor, Doctor in Technics (Doctor of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Andrey Grinkiv, Senior Researcher, PhD tech. sci., Doctoral student, Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Sergey Lysenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Oleg Krupitsa, applicant, Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Kostiantyn Panayotov, Associate Professor, Doctor in Technics (Doctor of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Abstract

The ignition system is considered one of the most complex systems, which traditionally accounts for a large percentage of malfunctions and violations of regulations. Failure of the ignition system significantly impairs the operation of the car, which increases fuel consumption, and reduces engine power. In gasoline internal combustion engines, the process of fault finding and analysis is carried out by visually observing the voltage waveforms in the primary and secondary circuit. In modern diagnostic systems, it is possible to implement all of the above approaches for diagnosing a fault through the use of intelligent software and hardware systems (intelligent sensors) for monitoring and control. Such computer tools are versatile, as they have the ability to change the software that allows you to control the process of their work and functionality. The diagnostic system is considered as an intelligent control and information system. Its main purpose is to diagnose the engine ignition system in order to provide the necessary torque and power output. It is a set of mechatronic units and mechanisms controlled by a microprocessor according to data received from sensors. During the operation of the vehicle, the formation of diagnostic information is based on the analysis of the data of the integrated on-board system and organoleptic methods. An algorithm has been developed for conducting a complete vehicle diagnostics. It is proved that obtaining reliable information from resource-determining systems and units is not possible. Computer diagnostics and an on-board monitoring system provide periodic data on the presence of deviations of diagnostic parameters. The joint use of the on-board system and organoleptic methods cannot always timely determine the moment of deterioration of the technical condition of the car and eliminate malfunctions in systems and assemblies. It was determined that in order to enhance the objectivity of monitoring the technical condition of the car, it is necessary to place sensors in critical nodes that provide the necessary information and develop a clear method for diagnosing a specific malfunction of systems and assemblies.

Keywords

ignition system, malfunctions, diagnostics, intelligent maintenance system

Full Text:

PDF

References

1. Pestrikov, V.M. & Evkarpiev, V.E. (2014). Osobennosti diagnostiki sovremennyih avtotransportnyih sredstv [Diagnostic features of modern vehicles]. Tehniko-tehnologicheskie problemyi servisa – Technical and technological problems of service, №4(30), 14-19 [in Russian].

2. Aulin, V.V. & Hrynkiv, A.V. (2017). Rozrobka metodyky vyboru informatyvnykh system i ahrehativ zasobiv transportu ta diahnostychnykh parametriv yikh tekhnichnoho stanu [Development of a methodology for selecting information systems and aggregates of vehicles and diagnostic parameters of their technical condition]. Ratsionalne vykorystannia enerhii v tekhnitsi: zb. tez dopovidei XIII Mizhnar. nauk. konf. – Rational use of energy in engineering: Coll. of abstracts of the XIII International. Sciences. Conf. Kyiv: NUBiPU. 2017. S.57-59 [in Ukrainian].

3. Gruzdov, G.N. et al. (2015). Analiticheskie issledovaniya ekspluatatsii avtotransportnyih sredstv: monografiya [Analytical studies of the operation of motor vehicles: monograph]. Moskva: RUSAYNS, 144 s [in Russian].

4. Predko, A.V., Gritsuk, Yu.V., Gritsuk, I.V. & Volkov, V.P. (2015). Monitoring, diagnostirovanie i prognozirovanie parametrov tehnicheskogo sostoyaniya transportnyih sredstv v usloviyah ITS [Monitoring, diagnosis and forecasting of the technical condition of vehicles in ITS conditions]. Alternativnyie istochniki energii v transportno-tehnologicheskom komplekse: problemyi i perspektivyi ratsionalnogo ispolzovaniya. Sbornik nauchnyih trudov po materialam ezhegodnyih konferentsiy - Alternative energy sources in the transport and technological complex: problems and prospects of rational use. Collection of scientific papers on the materials of annual conferences. Voronezh, Vol. 2, 126–131 [in Russian].

5. Makarova, I.V., Habibullin, R.G. & Belyaev, E.I. (2013). Povyishenie koeffitsienta tehnicheskoy gotovnosti parka avtomobilnoy tehniki sredstvami intellektualizatsii transportnoy sistemyi [Increasing the coefficient of technical readiness of the fleet of vehicles by means of intellectualization of the transport system]. Fundamentalnyie issledovaniya- Basic research, № 10-2, 282-287 [in Russian].

6. Intensivnost narastaniya polomok issleduemyih avtomobiley v zavisimosti ot probega (2019) [The intensity of the increase in breakdowns of the investigated cars, depending on the mileage]. Nemetskaya kompaniya po nezavisimoy diagnostike avtomobiley DEKRA - German company for independent car diagnostics DEKRA. URL: https://www.used-car-report.com/en [in German].

7. Aulin, V.V., Zamota, T.N., Grinkiv, A.V. & Karaichev, A.A. (2018). Harakternyie otkazyi i struktura diagnosticheskoy informatsii o tehnicheskom sostoyanii avtomobiley NISSAN X-TRAIL [Typical failures and structure of diagnostic information on the technical condition of NISSAN X-TRAIL vehicles]. Inovatsiini tekhnolohii rozvytku ta efektyvnosti funktsionuvannia avtomobilnoho transportu: zbirnyk naukovykh materialiv Mizhnarodnoi naukovo-praktychnoi konferentsii - Innovative technologies for the development and efficiency of road transport: a collection of scientific materials of the International Scientific and Practical Conference. Kropyvnytskyi, (pp.256 – 264) [in Russian].

8. Aulin, V.V., Zamota, T.N., Grinkiv, A.V. & Karaichev, A.A. (2019). Povyishenie effektivnosti polucheniya dostovernoy diagnosticheskoy informatsii o tehnicheskom sostoyanii avtomobiley NISSAN X-TRAIL [Povyishenie effektivnosti polucheniya dostovernoy diagnosticheskoy informatsii o tehnicheskom sostoyanii avtomobiley NISSAN X-TRAIL]. (V pechati) [in Russian].

9. Zelman, M.A. (1991). Metrologicheskie osnovyi tehnicheskih izmereniy [Metrological foundations of technical measurement]. Moskow: Izd-vo standartov [in Russian].

10. Samarskiy A. A. (2005). Vvedenie v chislennyie metodyi [Introduction to numerical methods]. Mosklow: Lan [in Russian].

11. Sergeev, A.G. (1998). Metrologicheskoe obespechenie avtomobilnogo transporta [Metrological support of automobile transport]. Moskow: Transport [in Russian].

12. Korovkin, N.V. & Selina, E.E. (1992). Modelirovanie volnovyih protsessov v raspredelennyih elektromagnitnyih sistemah [Modeling wave processes in distributed electromagnetic systems]. SPb.: SPbGTU [in Russian].

13. Krugov, V.I. (1998). Avtomaticheskoe regulirovanie i upravlenie dvigateley vnutrennego sgoraniya [Automatic regulation and control of internal combustion engines]. Moskow: Mashinostroenie [in Russian].

GOST Style Citations

Пристатейна бібліографія ГОСТ

  • Пестриков В.М., Евкарпиев В.Е. Особенности диагностики современных автотранспортных средств. Технико-технологические проблемы сервиса. 2014. №4(30). С. 14-19.
  • Аулін В.В., Гриньків А.В. Розробка методики вибору інформативних систем і агрегатів засобів транспорту та діагностичних параметрів їх технічного стану. Раціональне використання енергії в техніці: зб. тез доповідей XІІІ Міжнар. наук. конф. 17-19 травня 2017 р. К.: НУБіПУ. 2017. С.57-59.
  • Груздов Г.Н. и др. Аналитические исследования эксплуатации автотранспортных средств: монография. Москва: РУСАЙНС, 2015. 144с.
  • Предко А.В., Грицук Ю.В., Грицук И.В., Волков В.П. Мониторинг, диагностирование и прогнозирование параметров технического состояния транспортных средств в условиях ITS. Альтернативные источники энергии в транспортно-технологическом комплексе: проблемы и перспективы рационального использования. Сборник научных трудов по материалам ежегодных конференций. 27–28 апреля 2015 г. Воронеж. 2015. Вып. 2. С. 126–131.
  • Макарова И.В., Хабибуллин Р.Г., Беляев Э.И. Повышение коэффициента технической готовности парка автомобильной техники средствами интеллектуализации транспортной системы. Фундаментальные исследования. 2013. № 10-2. С. 282-287.
  • Интенсивность нарастания поломок исследуемых автомобилей в зависимости от пробега. Немецкая компания по независимой диагностике автомобилей DEKRA. URL: https://www.used-car-report.com/en/ (Дата обращения: 07.03. 2019).
  • Аулин В.В.,Замота Т.Н., Гринькив А.В., Караичев А.А. Характерные отказы и структура диагностической информации о техническом состоянии автомобилей NISSAN X-TRAIL. Іноваційні технології розвитку та ефективності функціонування автомобільного транспорту: збірник наукових матеріалів Міжнародної науково-практичної конференції., 14-15 листопада 2018 року. Кропивницький, 2018. – С. 256 - 264.
  • Аулин В.В., Замота Т.Н., Гринькив А.В., Караичев А.А. Повышение эффективности получения достоверной диагностической информации о техническом состоянии автомобилей NISSAN X-TRAIL. (В печати).
  • Зельман М.А. Метрологические основы технических измерений. Москва: Изд-во стандартов, 1991. 121 с.
  • Самарский А. А. Введение в численные методы. Москва: Лань, 2005. 288с.
  • Сергеев А.Г. Метрологическое обеспечение автомобильного транспорта. Москва: Транспорт, 1988. 369 с.
  • Коровкин Н.В., Селина Е.Е. Моделирование волновых процессов в распределенных электромагнитных системах. СПб.: СПбГТУ, 1992. 264 с.
  • Кругов В.И. Автоматическое регулирование и управление двигателей внутреннего сгорания. Москва: Машиностроение, 1998. 34 с.
  • Copyright (c) 2019 Viktor Aulin, Taras Zamota, Andriy Grinkiv, Sergiy Lysenko, Oleg Krupitsa, Kostiantyn Panayotov