DOI: https://doi.org/10.32515/2664-262X.2019.1(32).211-219

Analysis of the Accuracy of the Reproduction of the Reference Trajectory by the Gough-Stewart Platform with the Control System for Various types of Tasks

Valerii Zozulia, Sergiy Osadchy, Mykola Melnichenko

About the Authors

Valerii Zozulia, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Sergiy Osadchy, Professor, Doctor in Technics (Doctor of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Mykola Melnichenko, postgraduate, Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Abstract

The purpose of the paper is to analyze publications aimed at obtaining an accurate estimate of the test signal reproduction by the Gough -Stewart platform with a specific control system for various types of tasks based on experimental data. At the same, to identify the features of the design, control system, type of test signal and experimental conditions that affect the accuracy characteristics of the Gough -Stewart platform. In the paper an analysis of researches on the estimation of the accuracy of the motion of the mechanism of the carrier system of the Gough -Stewart system in the dynamics was performed in the development of the reference trajectory, in particular, the circumference and the sinusoidal signal, that is, regular signals. On the basis of the analysis, the connection between the quality of the task of tracking the reference trajectory for various types of tasks performed, from the design parameters used by the control system of the Gough-Stewart platform was evaluated. As the analysis shows, the accuracy of reproduction depends on the speed of movement, and on the direction of motion. For a better evaluation of the accuracy of the control of the Gough-Stewart platform when performing a specific task, it is necessary to use as a test signal a signal that is as close as possible to the actual operating conditions. The analysis shows that used as a control system for the Gough-Stewart platform, robust and adaptive controls perform more precisely the reproduction of the trajectory than simple PD, PID. This also confirms the need for feedback that covers the entire carrier system of the Gough-Stewart platform, and not just each rod separately. It can also be seen that not one of the proposed control systems can guarantee the optimal use of the Gough-Stewart platform in order to achieve extremely precise characteristics.

Keywords

Gough-Stewart platform, control system, reference trajectory, accuracy estimates

Full Text:

PDF

References

1. Stewart, D. (1965). A platform with 6 degrees of freedom. Proc. of the Institution of mechanical engineers, 180 (Part 1, 15), P. 371–386 [in English].

2. Merlet, J.-P. (2006). Parallel Robots, Springer, 2nd edition. 394 p. [in English].

3. Kuznetsov, Yu. M., Dmitriev, D. O. & Dinevich, G. Yu. (2009). Komponovky verstativ z mekhanizmamy paralelʹnoyi struktury [Compositions of machine tools with mechanisms of parallel structure]. Kyiv; Kherson: Nats. tekhn. un-t Ukrayiny "Kyyiv. politekhn. in-t", Kherson. nats. tekhn. un-t [in Ukraine].

4. Rozrobka fizychnoyi modeli verstata na osnovi mekhanizmu paralelʹnoyi struktury z systemoyu keruvannya pryvodamy peremishchennya robochoho orhana [Development of the physical model of the machine on the basis of the mechanism of parallel structure with the control system of the actuators of movement of the working body]. (2011): Zvit po NDDKR Kirovohradsʹkyy natsionalʹnyy tekhnichnyy universytet. – № DR 0109U00210, oblik. № 0211U005056. Kirovograd [in Ukrainian].

5. Hag Seong Kim. (2008). Task Space Approach of Robust Nonlinear Control for a 6 DOF Parallel Manipulator. Parallel Manipulators, New Developments / Book edited by: Jee-Hwan Ryu. I-Tech Education and Publishing. P. 427-444. ISBN 978-3-902613-20-2. URL: http://www.intechopen.com/books/parallel_manipulators_new_[in English].

6. Boyin Ding. (2014). A Study of a Gough-Stewart Platformbased Manipulator for Applications in Biomechanical Testing: A thesis submitted in fulfillment of the requirements for the degree of Ph.D. in Mechanical Engineering / School of Mechanical Engineering, The University of Adelaide. South Australia, Australia. 237 p. [in English].

7. Hamid D. Taghirad. (2013). Parallel Robots. Mechanics and Control. CRC Press; 1 edition, by Taylor & Francis Group. 533 p. [in English].

8. Zozulya, V.A., Osadchy, S.I., Belyaev, YU. & Pawłowski, P. (2018). Klasyfikatsiya zavdannya y Pryntsypiv upravlinnya mekhanizmom paralelʹnoyi kinematichnoyi struktury dlya vyrishennyu riznikh zavdannya [Classification of tasks and principles of management of the mechanism of a parallel kinematic structure for solving various problems]. Automation of Technological and Business Processes, 10 (2), 18 – 29 [in Ukraine].

9. Feldbaum A.A. (1966). Osnovy teorii optimal'nykh avtomaticheskikh sistem [Fundamentals of the theory of optimal automatic systems]. Moskow.: Nauka [in Russian].

10. Sirotkin R. A. (2008). Eksperimental'noye issledovaniye staticheskikh i dinamicheskikh svoystv mekhanizma parallel'noy struktury na primere nesushchey sistemy stanka – geksapod [Experimental study of the static and dynamic properties of the structure of the mechanism parallel to the example machine carrier system – hexapod] : Candidate’s thesis. Moscow [in Russian].

11. Demyanenko A. S. (2015). Systema kontrolyu prostorovo polozhennya instrumentu verstata z mekhanizmami paralelʹnoyi struktury [The system of control of the spatial position of the tool of the machine with mechanisms of parallel structure]. Extended abstract of candidate’s thesis. Kyiv [in Ukraine].

12. Stanki metallorezhushchiye. Metody proverki tochnosti i postoyanstva otrabotki krugovoy trayektorii [Metal-cutting machines. Methods for checking the accuracy and consistency of working out a circular path]. (1997). HOST 30544-97 from 20th November 1997. Minsk. Mezhgosudarstvennyy sovet po standartizatsii, metrologii i sertifikatsii [in Russian].

13. Marcel Honegger. (2019). Nonlinear adaptive control of a 6 dof parallel manipulator. URL: https://www.researchgate.net/publication/228594629_Nonlinear_adaptive_control_of_a_6_dof_parallel_manipulator [in English].

14. Rossell, Josep M., Vicente-Rodrigo, Jesus, Rubió-Massegú, J., Barcons, V. (2018). An effective strategy of real-time vision-based control for a Stewart platform. IEEE International Conference on Industrial Technology. "Proceedings of the 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon, France, 19-22 February 2018". pp. 75-80. URL: http://hdl.handle.net/2117/114945 [in English].

15. Se-Han Lee, Jae-Bok Song, Woo-Chun Choi, Daehie Hong. (2003). Position control of a Stewart platform using inverse dynamics control with approximate dynamics. Journal of Mechatronics, Vol. 13, 605–619 [in English].

16. Alexandre Campos, Jacqueline Quintero, Roque Saltar´en, Manuel Ferre and Rafael Aracil. (2008). An Active Helideck Testbed for Floating Structures based on a Stewart-Gough Platform. IEEE/RSJ International Conference on Intelligent Robots and Systems. Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Acropolis Convention Center Nice, France, Sept, 22-26. pp.3705-3710 [in English].

17. Vovk V.G., Strashko V.A., Timoshenko N.A. (2007). Tryvymirna modelʹ dynamiky stokhastychnykh kutovykh rukhiv korablya v kreysersʹkomu rusi [Three-dimensional model of the dynamics of the stochastic angular motions of a ship in cruising motion]. Proceedings from gyro technology, navigation, traffic management and aerospace engineering: VI mizhnarodna naukovo-tekhnichna. Chastyna II (26-27 kvitnya 2007 hoda ) - VI International Scientific and Technical Conference. (pp.14-19). Kyyiv, Ukrayina [in Russian].

GOST Style Citations

  1. Stewart D. A platform with 6 degrees of freedom. Proc. of the Institution of mechanical engineers, 180 (Part 1, 15), 1965. P. 371–386.
  2. Merlet, J.-P. Parallel Robots. Springer; 2nd edition, 2006. 394 p.
  3. Кузнєцов Ю.М., Дмитрієв Д.О., Діневич Г.Ю. Компоновки верстатів з механізмами паралельної структури : монографія. К.; Херсон: Нац. техн. ун-т України "Київ. політехн. ін-т", Херсон. нац. техн. ун-т. 2009. 456 c.
  4. Розробка фізичної моделі верстата на основі механізму паралельної структури з системою керування приводами переміщення робочого органа: Звіт по НДДКР Кіровоградський національний технічний університет. № ДР 0109U00210, облік. № 0211U005056. Кіровоград, 2011. 176с.
  5. Hag Seong Kim. Task Space Approach of Robust Nonlinear Control for a 6 DOF Parallel Manipulator. Parallel Manipulators, New Developments / Book edited by: Jee-Hwan Ryu. I-Tech Education and Publishing, 2008. P. 427-444. ISBN 978-3-902613-20-2. URL: http://www.intechopen.com/books/parallel_manipulators_new_developments (дата звернення: 1.05.2019).
  6. Boyin Ding. A Study of a Gough-Stewart Platformbased Manipulator for Applications in Biomechanical Testing: A thesis submitted in fulfillment of the requirements for the degree of Ph.D. in Mechanical Engineering / School of Mechanical Engineering, The University of Adelaide. South Australia, Australia, 2014. 237 p.
  7. Hamid D. Taghirad. Parallel Robots. Mechanics and Control. CRC Press; 1 edition, by Taylor & Francis Group, 2013. 533 p.
  8. Зозуля В.А., Осадчий С.І., Бєляєв Ю., Pawłowski P. Класифікація завдань і принципів управління механізмом паралельної кінематичної структури для вирішення різних завдань. Automation of Technological and Business Processes. 2018. Т.10, №2. С. 18 – 29.
  9. Фельдбаум А.А. Основы теории оптимальных автоматических систем. Москва: Наука, 1966. 623с.
  10. Сироткин Р. О. Экспериментальное исследование статических и динамических свойств механизма параллельной структуры на примере несущей системы станка – гексапода: дис. … канд. тех. наук: 05.02.11, 05.02.18 / Ростислав Олегович Сироткин. Москва. 2008. 170 с.
  11. Дем’яненко А. С. Система контролю просторового положення інструменту верстата з механізмами паралельної структури: автореф. дис. на здобуття вч. ступеня канд. тех. наук: спец. 05.03.01 «Процеси механічної обробки, верстати та інструменти». Київ. 2015. 20 с.
  12. Станки металлорежущие. Методы проверки точности и постоянства отработки круговой траектории. ГОСТ 30544-97. [Введен в действие от 1997-11-20]. Минск: Межгосударственный совет по стандартизации, метрологии и сертификации. 1997. 9 с.
  13. Marcel Honegger. Nonlinear adaptive control of a 6 dof parallel manipulator. URL: https://www.researchgate.net/publication/228594629_Nonlinear_adaptive_control_of_a_6_dof_parallel_manipulator (дата звернення: 1.05.2019).
  14. Rossell, Josep M., Vicente-Rodrigo, Jesus, Rubió-Massegú, J., Barcons, V. An effective strategy of real-time vision-based control for a Stewart platform. IEEE International Conference on Industrial Technology. "Proceedings of the 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon, France, 19-22 February 2018". 2018, pp. 75-80. URL: http://hdl.handle.net/2117/114945 (дата звернення: 1.05.2019).
  15. Se-Han Lee, Jae-Bok Song, Woo-Chun Choi, Daehie Hong. Position control of a Stewart platform using inverse dynamics control with approximate dynamics. Journal of Mechatronics 2003. Vol. 13. pp. 605–619.
  16. Alexandre Campos, Jacqueline Quintero, Roque Saltar´en, Manuel Ferre and Rafael Aracil. An Active Helideck Testbed for Floating Structures based on a Stewart-Gough Platform. IEEE/RSJ International Conference on Intelligent Robots and Systems. " Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Acropolis Convention Center Nice, France, Sept, 22-26, 2008" pp. 3705-3710.
  17. Вовк В.Г., Страшко В.А., Тимошенко Н.А. Трехмерная модель динамики стохастических угловых движений корабля в крейсерском движении. Гіротехнолопї, навігація, керування рухом та конструювання авіаційно-космічної техніки: VI міжнародна науково-технічна конференція. Збірник доповідей. Частина ІІ, 26-27 квітня 2007 р. Київ: Україна. 2007. С.14-19.
Copyright (c) 2019 Valerii Zozulia, Sergiy Osadchy, Mykola Melnichenko