DOI: https://doi.org/10.32515/2664-262X.2019.1(32).184-194

Construction of Cloud information Technologies for Optimization of Technological Process of Restoration and Strengthening of Surfaces of Parts

Tetiana Smirnova, Yevhenii Solovykh, Oleksii Smirnov, Oleksandr Drieiev

About the Authors

Tetiana Smirnova, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Yevhenii Solovykh, Professor, Doctor in Technics (Doctor of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Oleksii Smirnov, Professor, Doctor in Technics (Doctor of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Oleksandr Drieiev, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Abstract

In the given work the problem of optimization of the technological process of restoration and strengthening of surfaces of parts is considered in the conditions of flexible change of parameters of carrying out of technological operations. To do this, we need to develop an appropriate information technology in the form of a recommendation system that allows you to choose an optimized chain of technological processes, which in turn allows you to implement the technological process of recovery and strengthening of parts surfaces in accordance with the given criteria. Proceeding from the widespread distribution of the Internet, and its application in modern production, this technology is offered in the form of cloud service. The subject of the study in the article is the cloud information technology optimizing the technological process of recovery and strengthening of parts surfaces. The purpose of the work, respectively, is to build a cloud information technology optimizing the technological process of recovery and strengthening the surfaces of parts with specified characteristics based on a combination of several technological processes. For this purpose, the following set of tasks was solved in this work: an overview of known expert systems of optimization of the technological process and their reduction to an abstract view was carried out; for this purpose, information movement was introduced in the expert system of optimization of technological processes, which was based on the analysis of the process of electric arc spraying; formalized subsets of abstract expert systems for optimizing the technological process; formalized recommendation systems for optimization of the technological process chain, as an add-on of the expert system over the expert systems of individual technological processes. The results of work are the information technology of optimization of the technological process of restoration and strengthening of parts surfaces as a cloud service. Conclusions: in the whole, the information technology of solving the problem of constructing an optimized chain of technological processes of restoration and strengthening of surfaces of shafts, with the choice of a more optimal process among alternatives, in the form of cloud service is proposed.

Keywords

information technologies, expert systems, restoration, strengthening, detail, technological process

Full Text:

PDF

References

1. Hoh, V.D., Meleshko, E.V. & Yakimenko, M.S. (2016). DoslIdzhennya metodIv pobudovi ekspertnih sistem. Sistemi upravlInnya, navIgatsIYi ta zv'yazku, 4(40), 48-52 [in Ukrainian].

2. Skripka, K.I. & Zenkin, M.A. (2004). Ekspertna sistema avtomatizovanogo viboru sposobIv vIdnovlennya spratsovanih detaley. VIsnik ZhDTU. TehnIchnI nauki, 1 (28), 66-68 [in Ukrainian].

3. Limarenko, V. V. (2019). InformatsIyna sistema pIdtrimki rIshen dlya avtomatizatsIYi stvorennya tehnologIchnih protsesIv mehanoobrobki detaley visokotochnogo obladnannya: disertatsIya kand. tehn. Nauk. HarkIv [in Ukrainian].

4. Limarenko, V.V., Havina, I.P., & Risovannyiy, A.N. (2017). Postanovka i reshenie zadachi parametricheskoy optimizatsii operatsiy rezaniya metallov. Sistemi upravlInnya, navIgatsIYi ta zv’yazku, 4 (44), 20–24 [in Russian].

5. Limarenko, V.V & Havina, I.P. (2017). Reshenie zadachi optimizatsii parametrov obrabotki metallov pri operatsii tocheniya. RadIoelektronnI I komp’yuternI sistem, 3 (83), 77–86 [in Russian].

6. Babich, K.K., Sekirin, A.I. & Novikov, D.D. (2017). Podsistema optimizatsii rabotyi gibkih proizvodstvennyih sistem s ispolzovaniem mnogokriterialnyih geneticheskih algoritmov. Informatika I kIbernetika. Pokrovsk: DonNTU, 3 (9), 24–28 [in Russian].

7. Gania, I.P., Stachowiak, A. & Oleśkуw-Szłapka, J. (2017). Flexible Manufacturing Systems: Industry 4.0 Solution. 24th International Conference on Production Research, 57–62 [in English].

8. Slim Bechikh, Rituparna Datta & Abhishek Gupta. (2017). Recent Advances in Evolutionary Multi-objective Optimization, Switzerland: Springer International Publishing, 165 [in English].

9. Magruk A. (2016). The internet of things as the future technological trend of the innovative development of logistics. Research in Logistics and Production. Poznan: University of Technology, №7, 16–24 [in English].

10. Wit, Grzesik. (2016). Advanced Machining Processes of Metallic Materials. Theory, Modelling, and Applications. Amsterdam, 2nd Edition, 608 [in English].

11. Rathod, K.B. & Lalwani D. (2016). Modeling of Cutting Forces for Finishing and Roughing Operations in Oblique Cutting. Journal of Manufacturing Engineering, 11, 126–134 [in English].

12. Milan, Milutinović & Ljubodrag, Tanović. (2016).Сutting Forces in Hard Turning Comprising Tool Flank Wear and its implication for the Friction Between Tool and Workpiece. Tehnički vjesnik, № 23, 1373–1379 [in English].

13. Rao, C.J., Sreeamulu, D. & Arun Tom Mathew. (2014). Analysis of Tool Life during Turning Operation by Determining Optimal Process Parameters. Procedia Engineering. Amsterdam: Elsevier, № 97, 241–250 [in English].

14. Nidhiry, N.M. & Saravanan, R. (2014). FMS scheduling optimization using modified NSGA-II. International Journal of Mechanical and Production Engineering, 2, № 2, 1–6 [in English].

15. Nidhiry, N. M. & Saravanan, R. (2014). Scheduling optimization of a flexible manufacturing system using a modified NSGA-II algorithm. Advances in Production Engineering & Management, 9, № 3, 139–151 [in English].

16. Wan, J. Yan, H. & Liu, Q. (2013). Enabling cyber-physical systems with machine-to-machine technologies. International Journal of Ad Hoc and Ubiquitous Computing, №13, 187–196 [in English].

GOST Style Citations

  1. Хох В.Д., Мелешко Є.В., Якименко М.С., Дослідження методів побудови експертних систем. Системи управління, навігації та зв'язку. 2016. вип. 4(40). С.48-52.
  2. Скрипка К.І., Зенкин M.А. Експертна система автоматизованого вибору способів відновлення спрацьованих деталей. Вісник ЖДТУ. Технічні науки. 2004. № 1 (28). С. 66-68.
  3. Лимаренко В. В. Інформаційна система підтримки рішень для автоматизації створення технологічних процесів механообробки деталей високоточного обладнання: дисертація канд. техн. наук, Національний технічний університет «Харківський політехнічний інститут». Харків. 2019.
  4. Лимаренко В.В., Хавина И.П., Рисованный А.Н. Постановка и решение задачи параметрической оптимизации операций резания металлов. Системи управління, навігації та зв’язку. Полтава: ПНТУ ім. Ю. Кондратюка. 2017. вип. 4 (44). С. 20–24,
  5. Лимаренко В.В, Хавина И.П. Решение задачи оптимизации параметров обработки металлов при операции точения. Радіоелектронні і комп’ютерні системи. Харків: НАУ ім. Н. Є. Жуковського «ХАІ». 2017. вип. 3 (83). С. 77–86.
  6. Бабич К.К., Секирин А.И., Новиков Д.Д. Подсистема оптимизации работы гибких производственных систем с использованием многокритериальных генетических алгоритмов. Інформатика і кібернетика. Покровськ: ДонНТУ. 2017. № 3 (9). С. 24–28.
  7. Gania I.P., Stachowiak A., Oleśkуw-Szłapka J. Flexible Manufacturing Systems: Industry 4.0 Solution. 24th International Conference on Production Research. Poznan. 2017. Р.57–62.
  8. Slim Bechikh, Rituparna Datta, Abhishek Gupta. Recent Advances in Evolutionary Multi-objective Optimization. Switzerland: Springer International Publishing. 2017. Р. 165.
  9. Magruk A. The internet of things as the future technological trend of the innovative development of logistics. Research in Logistics and Production. Poznan: University of Technology. 2016, №7. Р. 16–24.
  10. Wit Grzesik. Advanced Machining Processes of Metallic Materials. Theory, Modelling, and Applications. Amsterdam. 2016. 2nd Edition. Р. 608.
  11. Rathod K.B., Lalwani D. Modeling of Cutting Forces for Finishing and Roughing Operations in Oblique Cutting. Journal of Manufacturing Engineering. Amsterdam: Elsevier. 2016. Vol. 11. Р. 126–134.
  12. Milan Milutinović, Ljubodrag Tanović. Сutting Forces in Hard Turning Comprising Tool Flank Wear and its implication for the Friction Between Tool and Workpiece. Tehnički vjesnik. 2016. № 23. Р. 1373–1379.
  13. Rao C.J., Sreeamulu D., Arun Tom Mathew. Analysis of Tool Life during Turning Operation by Determining Optimal Process Parameters. Procedia Engineering. Amsterdam: Elsevier. 2014. № 97. Р. 241–250.
  14. Nidhiry N.M., Saravanan R. FMS scheduling optimization using modified NSGA-II. International Journal of Mechanical and Production Engineering. 2014. Vol. 2, № 2. Р. 1–6.
  15. Nidhiry N. M., Saravanan R. Scheduling optimization of a flexible manufacturing system using a modified NSGA-II algorithm. Advances in Production Engineering & Management. 2014.Vol. 9, № 3. Р. 139–151.
  16. Wan J. Yan H., Liu Q.Enabling cyber-physical systems with machine-to-machine technologies. International Journal of Ad Hoc and Ubiquitous Computing. 2013. №13. Р 187–196.
Copyright (c) 2019 Tetiana Smirnova, Yevhenii Solovykh, Oleksii Smirnov, Oleksandr Drieiev