DOI: https://doi.org/10.32515/2664-262X.2019.1(32).202-210

Calculation of Unbalanced Parts Grippers by Robots

Ivan Pavlenko, Maxym Hodunko

About the Authors

Ivan Pavlenko, Professor, Doctor in Technics (Doctor of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Maxym Hodunko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Abstract

The substantiation of the calculation of the clamping forces in the gripping device of the robot with the maintenance of parts with an offset center of gravity. The formulas for calculating these forces are derived. Dependencies between the main design characteristics of the gripping device and the clamping forces are established. Grippers are one of the responsible executive bodies of industrial robots. Their main feature is that they represent a finite part of the spatially unlocked hand of the robot, which must perform high-speed reciprocating (rotating) movements with the required accuracy. In this case, the grip must reliably hold the transported parts with a minimum of their mass. All this is possible when performing their exact calculations. In a large number of robots of capture operations, it is necessary to keep parts that are not evenly squeezed into it. This may take place, both during initial capture and during the cycle of the operation of work with the detail when it sets it on a machine where it is processed and gets a different shape and size. All these features lead to a change in the power load on the gripper, and, accordingly, to change the working capacity of its quality. The first step in the study of these issues is to determine the required clamping forces of the retained parts. To do this, taking into account all baseline conditions, we compile a calculation scheme, where the detail is clamped with the capture with an asymmetric (not balanced) its placement. In earlier studies, it was found that in determining the forces of clamping of parts, according to such calculation schemes, there may be a condition where the number of complicated equations of equilibrium of the held part is less than the number of unknown clamping forces. Therefore, an additional condition was adopted for solving the task, when the minimum required clamping forces were determined, which then increased to the required stock factor. The same condition we accept in these calculations.

Keywords

gripping devices, clamping forces, industrial robot

Full Text:

PDF

References

1. Pavlenko, I.I. & Ghodunko, M.O. (2014). Zakhvatni prystroji robotiv [Robot grippers]. Kirovoghrad: KNTU [in Ukrainian].

2. Kozyrev, Yu.G. (2011). Zakhvatnye ustroistva i instrumenty promyshlennykh robotov [Gripping devices and tools of industrial robots]. Moskow: KNORUS [in Russian].

3. Monkman, S.Hesse, Steinmann, R. & Schunk, H. (2007). Robot Grippers. G.J. Copyright WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

4. Procj, Ja.I. (2008). Zakhopljuvaljni prystroji promyslovykh robotiv [Gripping devices for industrial robots]. Ternopil: Ternopiljsjkyj derzhavnyj tekhnichnyj universytet im.I.Puljuja [in Ukrainian].

5. Kozyrev, Yu.G. (2011). Primenenie promyshlennykh robotov [The use of industrial robots]. Moskow: KNORUS [in Russian].

6. Pavlenko, I.I. (2016). Promyslovi roboty ta RTK [Industrial robots and RТC]. Kropyvnycjkyj: Vydavecj Lysenko V.F. [in Ukrainian]

7. Koskinen, K. (2016). Design of a smart gripper for industrial applications., 8th June.

8. Caucey, G.C. & Quinn, R.D. (2016). Gripper design guidelines for modular manufacturing. Procceedings. 1998 IEEE International Conference on Robotics and Automation (Cat.No.98CH36146) n. pag. Web.8 June.

9. Raymond, R. Ma & Aaron, M. Dollar. (2016). Yale Openhand Project - Model T. Eng.yale.edu. N.p.. Web. 21 June.

GOST Style Citations

  1. Павленко І.І., Годунко М.О. Захватні пристрої роботів: навч. посібник. Кіровоград: КНТУ. 2014. 367с.
  2. Козырев Ю.Г. Захватные устройства и инструменты промышленных роботов: учеб. пособие. Москва: КНОРУС. 2011. 465с.
  3. Monkman, S.Hesse, R.Steinmann & H.Schunk. (2007) Robot Grippers. G.J. Copyright WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  4. Проць Я.І. Захоплювальні пристрої промислових роботів: навч. посібник. Тернопіль: Тернопільський державний технічний університет ім.І.Пулюя. 2008. 232с.
  5. Козырев Ю.Г. Применение промышленных роботов: учебное пособие. Москва: КНОРУС. 2011, 488с.
  6. Павленко І.І. Промислові роботи та РТК: монографія. Кропивницький: Лисенко В.Ф. 2016. 492с.
  7. K.Koskinen. (2016). Design of a smart gripper for industrial applications., 8th June.
  8. Caucey G.C. & R.D. Quinn. Gripper design guidelines for modular manufacturing. Procceedings. 1998 IEEE International Conference on Robotics and Automation (Cat.No.98CH36146) n. pag. Web.8 June.
  9. Raymond R. Ma & Aaron M. Dollar. (2016) Yale Openhand Project - Model T. Eng.yale.edu. N.p.. Web. 21 June.
Copyright (c) 2019 Ivan Pavlenko, Maxym Hodunko