DOI: https://doi.org/10.32515/2664-262X.2019.1(32).228-235

Rationale for the Development of Automated Computer-integrated Technology for the Identification and Monitoring of Oil Pollution

Victor Pashinskyi, Ivan Skrynnik, Igor Kharchenko, Khachaturian Serhii

About the Authors

Victor Pashinskyi, Professor, Doctor in Technics (Doctor of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Ivan Skrynnik, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Igor Kharchenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Khachaturian Serhii, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine

Abstract

Large oil spills in seawater are not regular, but the damage to the marine ecosystem is significant. Petroleum companies and oil shipment vessels can not prevent oil spills in the future, but they must be prepared to respond quickly to damages. Such technologies are at an early stage of development. The purpose of the article is to study modern automated technologies for monitoring, identification and purification of marine waters from oil pollution. The analysis of recent research has been performed and the need to develop a robot with artificial intelligence has been substantiated. A research methodology and stages of work are proposed. This robot should directly at place oil spill analyze the degree of pollution and clean the sea water. To develop a robot, it is suggested to use statistical methods (for processing data and identifying interactions); mathematical apparatus of fuzzy logic and neural networks; intelligent decision support systems; methods of simulation. Using the database and knowledge base, the robot will be able, depending on the type of pollution, to choose a method of cleaning sea water from oil pollution. In order to develop a robot that should perform the functions of monitoring, identifying and purifying seawater from oil pollution in real time, it is necessary to have information on types of oil spills, their chemical composition and methods of purification. On the basis of the information obtained, create databases and knowledge that will enable the development of the intellectual system with the neural network. Since the impacts of oil pollution can grow rapidly, it is necessary that such works be located directly at the facility (near wells, oil refineries, oil pipelines, etc.), in particular, by sea transport. This can solve the problem of remote sensing of oil spills. In addition, when developing a robot, it is necessary to consider the possibility of analyzing meteorological information. Now is working is ongoing on the accumulation of oil pollution statistics.

Keywords

artificial intelligence, oil pollutions, robot, neural network

Full Text:

PDF

References

1. Likhtarnikov, Ya.M. (1979). Variantnoe proektirovanie i optimizatsiya stalnyih konstruktsiy [Variant design and optimization of steel structures]. Moscow: Stroyizdat [in Russian].

2. Kudishin Yu.I., Belenya E. I., Ignateva V.S. (2007). Metallicheskie konstruktsii [Metal constructions]. Uchebnik dlya studentov vyisshih uchebnyih zavedeniy. – Textbook for university students, Vol. 10. Moscow: Academia [in Russian].

3. Irkliienko V.Iu. (2018). Vahovi pokaznyky prokatnykh balok [Weight characteristics of rolled beams]. Dosvid vprovadzhennia v navchalnyi protses suchasnykh kompiuternykh tekhnolohii. Studentskyi naukovo-praktychnyi seminar – Experience of introducing modern computer technologies into the educational process. Student Scientific and Practical Seminar, Vol. 5. – Kropyvnytskyi: CUNTU, 63-68 [in Ukrainian].

4. Khorolska N.O. (2018). Avtomatyzatsiia rozrakhunkiv i vahovi pokaznyky zvarnykh dvotavrovykh balok [Automation of calculations and weight indexes of welded H-beams]. Dosvid vprovadzhennia v navchalnyi protses suchasnykh kompiuternykh tekhnolohii. Studentskyi naukovo-praktychnyi seminar – Experience of introducing modern computer technologies into the educational process. Student Scientific and Practical Seminar, Vol. 5. – Kropyvnytskyi: CUNTU, 142-148 [in Ukrainian].

5. Viniar P.S. (2019). Metodyka i rezultaty rozroblennia sortamentu tonkostinnykh zvarnykh dvotavriv [Methodology and results of the development of the assortment of thin-walled welded H-beams]. Nauka-vyrobnytstvu, LIII naukova konferentsiia. – Science to production, LIII scientific conference – Kropyvnytskyi: CUNTU [in Ukrainian].

6. DBN V.2.6-198:2014. Stalevi konstruktsii. Normy proektuvannia [Steel structures. Design standards]. K.: Minrehion Ukrainy [in Ukrainian].

7. GOST 26020-83. Dvutavryi stalnyie goryachekatanyie s parallelnyimi granyami polok [Hot-rolled steel I-beam with parallel flange edges]. Moskow: IPK Publishing Standards [in Russian].

GOST Style Citations

  1. Лихтарников Я.М. Вариантное проектирование и оптимизация стальных конструкций. Москва: Стройиздат, 1979. 319 с.
  2. Металлические конструкции. Учебник для студентов высших учебных заведений / Ю.И. Кудишин и др.; под редакцией Ю.И. Кудишина. 10-е издание. Москва: Издательский центр "Академия", 2007. 688 с.
  3. Ірклієнко В.Ю. Вагові показники прокатних балок. Досвід впровадження в навчальний процес сучасних комп’ютерних технологій: зб. матеріалів V студ. наук.-прак. семінару. Кропивницький: ЦНТУ, 2018. С. 63-68.
  4. Хорольська Н.О. Автоматизація розрахунків і вагові показники зварних двотаврових балок. Досвід впровадження в навчальний процес сучасних комп’ютерних технологій: зб. матеріалів V студ. наук.-практ. семінару. Кропивницький: ЦНТУ, 2018. С. 142-148.
  5. Віняр П.С. Методика і результати розроблення сортаменту тонкостінних зварних двотаврів. Наука-виробництву, 2019: тези доп. студ. та магістр. на LIІІ наук. конф., квітень 2019 р. Кропивницький: ЦНТУ, 2019. С. 42-46.
  6. ДБН В.2.6-198:2014. Сталеві конструкції. Норми проектування. Київ: Мінрегіон України, 2014. 199 с.
  7. ГОСТ 26020-83. Двутавры стальные горячекатаные с параллельными гранями полок. Сортамент. Москва, 1984. 14 с.
Copyright (c) 2019 Victor Pashinskyi, Ivan Skrynnik, Igor Kharchenko, Khachaturian Serhii