DOI: https://doi.org/10.32515/2664-262X.2019.1(32).220-227
Rationale for the Development of Automated Computer-integrated Technology for the Identification and Monitoring of Oil Pollution
About the Authors
lena Holyk,, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine
Roman Zhesan, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine
Mohammad Ismail, postgraduate, Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine
Abstract
Large oil spills in seawater are not regular, but the damage to the marine ecosystem is significant. Petroleum companies and oil shipment vessels can not prevent oil spills in the future, but they must be prepared to respond quickly to damages. Such technologies are at an early stage of development.
The purpose of the article is to study modern automated technologies for monitoring, identification and purification of marine waters from oil pollution. The analysis of recent research has been performed and the need to develop a robot with artificial intelligence has been substantiated. A research methodology and stages of work are proposed. This robot should directly at place oil spill analyze the degree of pollution and clean the sea water. To develop a robot, it is suggested to use statistical methods (for processing data and identifying interactions); mathematical apparatus of fuzzy logic and neural networks; intelligent decision support systems; methods of simulation. Using the database and knowledge base, the robot will be able, depending on the type of pollution, to choose a method of cleaning sea water from oil pollution.
In order to develop a robot that should perform the functions of monitoring, identifying and purifying seawater from oil pollution in real time, it is necessary to have information on types of oil spills, their chemical composition and methods of purification. On the basis of the information obtained, create databases and knowledge that will enable the development of the intellectual system with the neural network. Since the impacts of oil pollution can grow rapidly, it is necessary that such works be located directly at the facility (near wells, oil refineries, oil pipelines, etc.), in particular, by sea transport. This can solve the problem of remote sensing of oil spills. In addition, when developing a robot, it is necessary to consider the possibility of analyzing meteorological information. Now is working is ongoing on the accumulation of oil pollution statistics.
Keywords
artificial intelligence, oil pollutions, robot, neural network
Full Text:
PDF
References
1. Solovjova, Zh., & Nyepyeina, G. (2011), Zabrudnennya svitovogo okeanu naftoproduktamy [The pollution oh the World Ocean oil products]. Naukovi pratsi. Ekolohiya – Scientific works. Ecology, Vol. 150, 138, 76-81. Retrieved from http://lib.chdu.edu.ua/pdf/naukpraci/ecology/2011/150-138-18.pdf [in Ukrainian].
2. Harahsheh, H. A. (2016). Oil spill detection and monitoring of Abu Dhabi coastal zone using Kompsat-5 SAR Imagery. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci, Vol. XLI-B8, 1115-1121. Retrieved from https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B8/1115/2016/isprs-archives-XLI-B8-1115-2016.pdf [in English].
3. Han, Y. & Clement, T.P. (2018). Development of a field testing protocol for identifying Deepwater Horizon oil spill residues trapped near Gulf of Mexico beaches. PLoS ONE, Vol. 13(1). DOI: 10.1371/journal.pone.0190508 [in English].
4. Eljabri, Abdallh & Gallagher, Caroline. (2012). Developing Integrated Remote Sensing and GIS Procedures for Oil Spills Monitoring at Libyan Coast. WIT Transactions on Ecology and the Environment, Vol. 44, Retrieved from http://www.ipcbee.com/vol44/004-ICEBS2012-C10001.pdf [in English].
5. Dolgopolova, V.L., & Patrusheva, O.V. (2016). Sposobyi ochistki morskih akvatoriy ot neftyanyih zagryazneniy [Methods for cleaning offshore areas from oil pollution]. Molodoy uchenyiy - Young scientist, №29(133), 229-234. Retrieved from https://moluch.ru/archive/133/37456/ [in Russian].
6. Plehov, V.H., Dyachenko, V.V. & Dyachenko, I.L. (2012). Avtomatizatsiya protsessov biologicheskoy ochistki stochnyih vod predpriyatiy neftyanoy promyishlennosti [Automation of processes of biological wastewater treatment of oil industry enterprises]. Vestnik PNIPU. Himicheskaya tehnologiya i biotehnologiya - Bulletin PNRPU. Chemical technology and biotechnology, №14, 22-33. Retrieved from https://cyberleninka.ru/article/n/avtomatizatsiya-protsessov-biologicheskoy-ochistki-stochnyh-vod-predpriyatiy-neftyanoy-promyshlennosti [in Russian].
7. Zatyagalova, V.V. (2014). Geoekologicheskiy monitoring zagryazneniy morya po dannyim distantsionnogo zondirovaniya [Geoecological monitoring of sea pollution from remote sensing data]. Obrazovatelnyie resursyi i tehnologii - Educational resources and technology, №5(8), 95-100. Retrieved from https://cyberleninka.ru/article/n/geoekologicheskiy-monitoring-zagryazneniy-morya-po-dannym-distantsionnogo-zondirovaniya [in Russian].
8. Zahugi E.M.H., Shanta M.M. & Prasad T.V. (2012). Design of multi-robot system for cleaning up marine oil spill. International Journal of Advanced Media and Communication, Vol. 2, № 4, 33-43. Retrieved from https://www.idc-online.com/technical_references/pdfs/information_technology/ DESIGN%20OF%20MULTI.pdf [in English].
9. Zahugi,E.M.H., Shanta, M.M. & Prasad, T.V. (2013). Oil spill cleaning up using swarm of robots. Advances in Computing and Information Technology. Advances in Intelligent Systems and Computing, Vol. 178, 215-224. DOI: 10.1007/978-3-642-31600-5_22 [in English].
10. Using robots to clean oil spills. Robotics tomorrow. roboticstomorrow.com. Retrieved from https://www.roboticstomorrow.com/article/2013/12/using-robots-to-clean-oil-spills [in English].
11. Convolution neural networks for visual recognition. cs231n.github.io. Retrieved from http://cs231n.github.io [in English].
GOST Style Citations
- Соловйова Ж. Ф., Нєпєіна Г.В. Забруднення світового океану нафтопродуктами. Наукові праці. Екологія. 2011. Т. 150, № 138. URL: http://ecology.chdu.edu.ua/article/view/63687/59185 (дата звернення: 12.03.2019).
- Harahsheh, H. A. Oil spill detection and monitoring of Abu Dhabi coastal zone using Kompsat-5 SAR Imagery. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2016. Vol. XLI-B8, P. 1115-1121. URL: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B8/1115/2016/isprs-archives-XLI-B8-1115-2016.pdf (Last accessed 24 Apr 2019).
- Han Y., Clement T.P. Development of a field testing protocol for identifying Deepwater Horizon oil spill residues trapped near Gulf of Mexico beaches. PLoS ONE, 2018 Vol. 13(1). DOI: 10.1371/journal.pone.0190508.
- Eljabri, Abdallh & Gallagher, Caroline. Developing Integrated Remote Sensing and GIS Procedures for Oil Spills Monitoring at Libyan Coast. WIT Transactions on Ecology and the Environment. 2012. Vol. 44. URL: http://www.ipcbee.com/vol44/004-ICEBS2012-C10001.pdf (Last accessed 12 Apr 2019).
- Долгополова В. Л., Патрушева О. В. Способы очистки морских акваторий от нефтяных загрязнений. Молодой ученый. 2016. №29 (133). C. 229-234. URL: https://moluch.ru/archive/133/37456/ (дата звернення: 13.05.2019).
- Плехов В. Г., Дьяченко В. В., Дьяченко И. Л. Автоматизация процессов биологической очистки сточных вод предприятий нефтяной промышленности. Вестник ПНИПУ. Химическая технология и биотехнология. 2012. №14. С. 22-33. URL: https://cyberleninka.ru/article/n/avtomatizatsiya-protsessov-biologicheskoy-ochistki-stochnyh-vod-predpriyatiy-neftyanoy-promyshlennosti (звернення: 13.05.2019).
- Затягалова В.В. Геоэкологический мониторинг загрязнений моря по данным дистанционного зондирования. Образовательные ресурсы и технологии. 2014. №5(8). C. 95-100. URL: https://cyberleninka.ru/article/n/geoekologicheskiy-monitoring-zagryazneniy-morya-po-dannym-distantsionnogo-zondirovaniya (дата звернення: 13.05.2019).
- Zahugi E.M.H., Shanta M.M., Prasad T.V. Design of multi-robot system for cleaning up marine oil spill. International Journal of Advanced Media and Communication. 2012. Vol. 2, № 4. P. 33-43. URL: https://www.idc-online.com/technical_references/pdfs/information_technology/DESIGN%20OF%20MULTI.pdf (Last accessed: 20.05.2019).
- Zahugi E.M.H., Shanta M.M., Prasad T.V. Oil spill cleaning up using swarm of robots. Advances in Computing and Information Technology. Advances in Intelligent Systems and Computing. 2013. Vol. 178. P. 215-224. DOI: 10.1007/978-3-642-31600-5_22.
- Using robots to clean oil spills. Robotics tomorrow: веб-сайт. URL: https://www.roboticstomorrow.com/article/2013/12/using-robots-to-clean-oil-spills (Last accessed: 14.05.2019)
- Convolution neural networks for visual recognition: веб-сайт. URL: http://cs231n.github.io (Last accessed: 05.05.2019)
Copyright (c) 2019 Olena Holyk, Roman Zhesan, Mohammad Ismail
Rationale for the Development of Automated Computer-integrated Technology for the Identification and Monitoring of Oil Pollution
About the Authors
lena Holyk,, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine
Roman Zhesan, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine
Mohammad Ismail, postgraduate, Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine
Abstract
Keywords
Full Text:
PDFReferences
1. Solovjova, Zh., & Nyepyeina, G. (2011), Zabrudnennya svitovogo okeanu naftoproduktamy [The pollution oh the World Ocean oil products]. Naukovi pratsi. Ekolohiya – Scientific works. Ecology, Vol. 150, 138, 76-81. Retrieved from http://lib.chdu.edu.ua/pdf/naukpraci/ecology/2011/150-138-18.pdf [in Ukrainian].
2. Harahsheh, H. A. (2016). Oil spill detection and monitoring of Abu Dhabi coastal zone using Kompsat-5 SAR Imagery. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci, Vol. XLI-B8, 1115-1121. Retrieved from https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B8/1115/2016/isprs-archives-XLI-B8-1115-2016.pdf [in English].
3. Han, Y. & Clement, T.P. (2018). Development of a field testing protocol for identifying Deepwater Horizon oil spill residues trapped near Gulf of Mexico beaches. PLoS ONE, Vol. 13(1). DOI: 10.1371/journal.pone.0190508 [in English].
4. Eljabri, Abdallh & Gallagher, Caroline. (2012). Developing Integrated Remote Sensing and GIS Procedures for Oil Spills Monitoring at Libyan Coast. WIT Transactions on Ecology and the Environment, Vol. 44, Retrieved from http://www.ipcbee.com/vol44/004-ICEBS2012-C10001.pdf [in English].
5. Dolgopolova, V.L., & Patrusheva, O.V. (2016). Sposobyi ochistki morskih akvatoriy ot neftyanyih zagryazneniy [Methods for cleaning offshore areas from oil pollution]. Molodoy uchenyiy - Young scientist, №29(133), 229-234. Retrieved from https://moluch.ru/archive/133/37456/ [in Russian].
6. Plehov, V.H., Dyachenko, V.V. & Dyachenko, I.L. (2012). Avtomatizatsiya protsessov biologicheskoy ochistki stochnyih vod predpriyatiy neftyanoy promyishlennosti [Automation of processes of biological wastewater treatment of oil industry enterprises]. Vestnik PNIPU. Himicheskaya tehnologiya i biotehnologiya - Bulletin PNRPU. Chemical technology and biotechnology, №14, 22-33. Retrieved from https://cyberleninka.ru/article/n/avtomatizatsiya-protsessov-biologicheskoy-ochistki-stochnyh-vod-predpriyatiy-neftyanoy-promyshlennosti [in Russian].
7. Zatyagalova, V.V. (2014). Geoekologicheskiy monitoring zagryazneniy morya po dannyim distantsionnogo zondirovaniya [Geoecological monitoring of sea pollution from remote sensing data]. Obrazovatelnyie resursyi i tehnologii - Educational resources and technology, №5(8), 95-100. Retrieved from https://cyberleninka.ru/article/n/geoekologicheskiy-monitoring-zagryazneniy-morya-po-dannym-distantsionnogo-zondirovaniya [in Russian].
8. Zahugi E.M.H., Shanta M.M. & Prasad T.V. (2012). Design of multi-robot system for cleaning up marine oil spill. International Journal of Advanced Media and Communication, Vol. 2, № 4, 33-43. Retrieved from https://www.idc-online.com/technical_references/pdfs/information_technology/ DESIGN%20OF%20MULTI.pdf [in English].
9. Zahugi,E.M.H., Shanta, M.M. & Prasad, T.V. (2013). Oil spill cleaning up using swarm of robots. Advances in Computing and Information Technology. Advances in Intelligent Systems and Computing, Vol. 178, 215-224. DOI: 10.1007/978-3-642-31600-5_22 [in English].
10. Using robots to clean oil spills. Robotics tomorrow. roboticstomorrow.com. Retrieved from https://www.roboticstomorrow.com/article/2013/12/using-robots-to-clean-oil-spills [in English].
11. Convolution neural networks for visual recognition. cs231n.github.io. Retrieved from http://cs231n.github.io [in English].
GOST Style Citations
- Соловйова Ж. Ф., Нєпєіна Г.В. Забруднення світового океану нафтопродуктами. Наукові праці. Екологія. 2011. Т. 150, № 138. URL: http://ecology.chdu.edu.ua/article/view/63687/59185 (дата звернення: 12.03.2019).
- Harahsheh, H. A. Oil spill detection and monitoring of Abu Dhabi coastal zone using Kompsat-5 SAR Imagery. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2016. Vol. XLI-B8, P. 1115-1121. URL: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B8/1115/2016/isprs-archives-XLI-B8-1115-2016.pdf (Last accessed 24 Apr 2019).
- Han Y., Clement T.P. Development of a field testing protocol for identifying Deepwater Horizon oil spill residues trapped near Gulf of Mexico beaches. PLoS ONE, 2018 Vol. 13(1). DOI: 10.1371/journal.pone.0190508.
- Eljabri, Abdallh & Gallagher, Caroline. Developing Integrated Remote Sensing and GIS Procedures for Oil Spills Monitoring at Libyan Coast. WIT Transactions on Ecology and the Environment. 2012. Vol. 44. URL: http://www.ipcbee.com/vol44/004-ICEBS2012-C10001.pdf (Last accessed 12 Apr 2019).
- Долгополова В. Л., Патрушева О. В. Способы очистки морских акваторий от нефтяных загрязнений. Молодой ученый. 2016. №29 (133). C. 229-234. URL: https://moluch.ru/archive/133/37456/ (дата звернення: 13.05.2019).
- Плехов В. Г., Дьяченко В. В., Дьяченко И. Л. Автоматизация процессов биологической очистки сточных вод предприятий нефтяной промышленности. Вестник ПНИПУ. Химическая технология и биотехнология. 2012. №14. С. 22-33. URL: https://cyberleninka.ru/article/n/avtomatizatsiya-protsessov-biologicheskoy-ochistki-stochnyh-vod-predpriyatiy-neftyanoy-promyshlennosti (звернення: 13.05.2019).
- Затягалова В.В. Геоэкологический мониторинг загрязнений моря по данным дистанционного зондирования. Образовательные ресурсы и технологии. 2014. №5(8). C. 95-100. URL: https://cyberleninka.ru/article/n/geoekologicheskiy-monitoring-zagryazneniy-morya-po-dannym-distantsionnogo-zondirovaniya (дата звернення: 13.05.2019).
- Zahugi E.M.H., Shanta M.M., Prasad T.V. Design of multi-robot system for cleaning up marine oil spill. International Journal of Advanced Media and Communication. 2012. Vol. 2, № 4. P. 33-43. URL: https://www.idc-online.com/technical_references/pdfs/information_technology/DESIGN%20OF%20MULTI.pdf (Last accessed: 20.05.2019).
- Zahugi E.M.H., Shanta M.M., Prasad T.V. Oil spill cleaning up using swarm of robots. Advances in Computing and Information Technology. Advances in Intelligent Systems and Computing. 2013. Vol. 178. P. 215-224. DOI: 10.1007/978-3-642-31600-5_22.
- Using robots to clean oil spills. Robotics tomorrow: веб-сайт. URL: https://www.roboticstomorrow.com/article/2013/12/using-robots-to-clean-oil-spills (Last accessed: 14.05.2019)
- Convolution neural networks for visual recognition: веб-сайт. URL: http://cs231n.github.io (Last accessed: 05.05.2019)